INNOVATION MANUFACTURING METHOD OF PRECAST CONCRETE FOR SPUN PILE PRODUCTS AT PRECAST CONSTRUCTION COMPANY IN INDONESIA WITH A RISK APPROACH AND ISO 56002 INNOVATION PROCESS TO INCREASE COMPETITIVENESS

Amanda Yohanna¹, Yusuf Latief¹, Ranti Hidayawanti¹, Rossy Armyn Machfudiyanto¹, Leni Sagita Riantini¹ ¹Department of Civil Engineering, University of Indonesia, Depok, Indonesia

Email: amanda.yohanna11@ui.ac.id

Abstract. With the construction industry increasingly turning to the precast concrete method because of its ability to reduce costs, improve quality and be on time in production, the market for precast is thriving. In Indonesia, according to data from the Ministry of Public Works and Public Housing, the use of precast concrete increases every year from 24 million tons in 2014 to 41.82 million tons in 2019. Activities that still need to be carried out optimally and efficiently for precast concrete products by taking into account competitors locally and abroad encourage continuous improvement necessity of productivity performance in increasing the competitiveness of companies. Thus, it is necessary to develop innovative methods for making precast concrete products by identifying the risks that hinder the process of making precast concrete. Precast concrete products generally are made of non-rotary and rotary methods. Focuses on a product with the highest production capacity in Indonesia, precast concrete with the rotary method spun pile. The paper aims to explore the current precast concrete production process activities in Indonesia and identifies risk factors for company competitiveness in precast concrete manufacturing methods. This goal was achieved using qualitative research, combining and validating the results from experts on production process activities and risk factors, which were analyzed using the Delphi method. Using ISO 56002, additional activities on spun pile workflow are generated from 66 risk factors and innovation processes. Innovation in high-risk spun pile manufacturing methods through causes, preventive actions, impacts, and corrective actions will be obtained from the dominant risk from spinning process activities to increase a company's competitiveness in facing market competition.

Keywords: Innovation, Manufacturing Methods, Precast Concrete, Risk, Competitiveness

1. Introduction

The trend of precast concrete production is increasing every year, except for the impact of the Covid-19 pandemic on the precast industry, requiring precast concrete production capacity to grow as well, as of market for precast is thriving. In 2014 AP3I Members provided a production capacity of 24.6 million tonnes per year from a total of 57 factories. In 2015 it increased to 25.3 million tonnes per year from 58 factories. In 2016 it increased to 26.8 million tonnes per year from a total of 63 factories, and in 2017 it increased to 34 million tons per year from a total of 76 AP3I Member factories,

according to the AP3I data profile [1]. Several local companies have produced various precast products. Still, there is no consistency in size or quality because the producers make different precast constructions based only on orders, without considering the minimal design loads the duct system can carry. Hence, it is inefficient [2]. Apart from that, according to Sundari [2], in the production and mixing of materials (mix design), they pay less attention to the materials used, so the results are also inadequate, and production decreases. So to increase the competitiveness of local products, product attractiveness, product quality, and competitive prices are needed. The use of precast products, methods, and technology in the precast industry in Indonesia is expected to have a corporate strategy, namely, innovation in the activity method of the precast concrete production process for buildings and infrastructure. Work methods significantly influence quality changes with increasingly fierce competition between companies, encouraging each company to create products that lead to product quality improvement through materials for production, estimating material availability, and determining production schedules so that it is completed according to demand [3].

Good activity planning will encourage the marketing strategy to have competitiveness. The long-term marketing strategy does not forget how the products and production technology, as well as the methods used to control the production process, are the company's characteristics from competing companies. One of the competitive forms of modern marketing is the process of deploying innovative products with new services, new methods, new technologies, and new processes. The traditional mass-production model is no longer suitable for today's market competition. Companies must compete to find solutions to increase their competitiveness [4]. Thus it is necessary to innovate in the method of making precast concrete. Risk management provides a methodology that can be used to see and manage the future with a scientific, structured, and comprehensive approach. The risk identification process can be essential in developing implemented innovations. By correctly understanding that risk is not just downside risk in the form of threats, organizations naturally identify top risks that can support the creation of opportunities and ensure that these opportunities support innovation [5].

2. Materials and Methods

2.1 Current Methods for Making Precast Concrete in Indonesia

Figure 1 Current Methods for Making Precast Concrete in Indonesia

The spun pile production process is divided into cutting & heading, forming & setting, casting, stressing & spinning, and curing & demoulding activities. In Figure 1 are the activities contained therein.

2.2 Company Competitiveness

Company competitiveness is part of a form of ability or advantage that is used as a strategic plan in creating part of the accumulated value of the company and is not carried out by competitors, and is difficult for competitors to imitate [6].

Competitiveness is the company's ability to compete with its competitors. Therefore, every company must have a competitive strategy and competitive advantage focused on dynamic processes [7].

The company's competitiveness aimed at in this study is the superior ability of a company to provide more value to its products than its competitors through a dynamic process with cost, quality, and time.

2.3 Risk Management

According to PMBOK 6th edition [8], there are several stages in carrying out risk management. Namely, there are risk management plans, risk identification, qualitative risk analysis, quantitative risk analysis, risk response planning, risk response implementation, and risk monitoring. The following is a discussion of risk management based on PMBOK 6th edition:

- Risk management planning is the process of defining how to carry out risk management activities. The key benefit of this process is ensuring that risk management level, type, and visibility are commensurate with the risks and importance to the company and other stakeholders.
- Identify Risks is the process of identifying overall risks and sources of risk and documenting their characteristics. The main benefit of this process is the documentation of existing risks and overall sources of risk [8]. Methods as tools and techniques that can be used vary, one of which is to make a checklist. This risk list can be developed based on information collected from the company.
- Perform qualitative risk analysis to improve the production performance of precast concrete manufacturing effectively, and this can be done by focusing on risks with the highest priority or high level. Qualitative risk analysis is used to test the priorities of the list of risks that have been identified.
- Perform quantitative risk analysis is the process of numerically analyzing the combined effect of identified risks and other sources of uncertainty on the overall objective. The main benefit of this process is that it measures overall risk exposure and can also provide additional quantitative risk information to support risk response planning [8]. From the list of risks created, it can be determined the level of influence of the risks that have been identified. Data collection is done through interviews and questionnaires given to experts (expert judgment).
- Plan risk response is carried out to increase opportunities and reduce threats to objectives. It is necessary to assume what factors can lead to inefficient precast concrete production. Suppose these factors are known based on the assumptions that have been determined in the list of risks. In that case, a risk response is developed, which becomes a recommendation for an innovative precast concrete method.

- Implement Risk Response is the process of implementing an agreed risk response plan. After the innovation recommendations for the method of making the precast concrete pass the risk response plan, the innovation recommendations can be implemented according to the decision letter made by the company.
- Monitor risk is the process of monitoring the implementation of agreed risk response plans, tracking identified risks, identifying and analyzing new risks, and evaluating the effectiveness of the risk process. Monitor the risk response or innovation recommendations that have been implemented so that the risk management performance that has been carried out can be identified

2.4 Manufacturing Method Innovation

Innovation is a process of finding new ideas, methods, tools, or something that needs to be managed in innovation management to benefit human life. Process innovation is a change that affects how the output is produced, while product innovation has the opposite definition. Namely, product innovation is a change in the actual output of both the goods and the service itself [9]. Innovation management provides a general framework for developing and deploying innovation capabilities, evaluating performance, and achieving desired results.

The Plan-Do-Check-Act (PDCA) [10] cycle can be used in innovation management to enable continuous improvement of innovation management. The PDCA cycle can be applied to an innovation management system as a whole or its parts by:

- Plan is the stage for setting goals and determining actions to address opportunities and risks.
- Do, carry out as planned in terms of support and operations.
- Check, monitors and (where possible) measures results against objectives.
- Act, is done by taking action to improve the innovation management system's performance continuously.

Figure 2 PDCA Guidelines for Innovation Management Systems

Reference: ISO 56002 [10]

The innovation process is carried out in 5 stages: identifying opportunities, creating concepts, validating concepts, developing solutions, and deploying solutions. The following is a design implementation of the innovation process in this study.

MANUFACTURING METHOD	Description	Input	Process	Output
Identify opportunities	Search GAP analysis and opportunities	Identification of Precast Concrete production process activities	Archive Analysis	Precast Concrete manufacturing activities
		Identification of variables and risk factors in the method of making Precast Concrete that affects the competitiven ess		Factors in the method of making Precast Concrete that affects the competitiveness
Create concepts	Efforts to fill gaps and take advantage of opportunities	Opportunity identification output	Process innovation system orientation through the implementat ion of a manufacturi ng innovation managemen t system with a risk approach	The design of production process activity factors that affect company competitiveness and innovation in methods of making precast concrete through high risk
Validate concepts	Validate ideas and innovation concepts created	Create concepts output	Presentation and discussion of the design results of the FGD	The results of the process innovation analysis regarding the validated production process activities

Table 1 Manufacturing Method Innovation Process

MANUFACTURING METHOD	Description	Input	Process	Output
Develop solutions	Development of ideas from validated innovation concepts	Concept validation output	Refinement and completion of the recommend ations from the FGD discussions	Suggestions that have been corrected and adapted to the results of the FGD
Deploy solutions	Realization of the value of innovative ideas to be realized	Develop solutions output	Submission of making SOPs to carry out innovation recommend ations	Implementation of innovation recommendation s and monitoring of innovation implementation

The company achieves a competitive advantage through innovation, one of which is a new production process. There is a positive relationship between activities in the production area and the competitiveness of companies by optimizing production flows with the most sophisticated production processes through innovation.

2.5 Frameworks

Figure 3 Research Framework

Carrying out an innovation process in developing innovative methods to reduce costs, improve quality, and timely completion of manufacturing method innovations using the most current and sophisticated production processes will increase a company's competitiveness in facing market competition. In this study, the innovation of the method of making precast concrete is based on the framework above, where the manufacturing method increases competitiveness by providing innovative recommendations for making precast concrete from the highest risk obtained from the objectives of each activity in the spun pile production process.

3. Results and Discussions

3.1 Innovation Manufacturing Method Factors

Data collection was carried out from the results of literature studies, interviews, and observations. Interviews and observations were carried out by visiting a precast factory in Indonesia, then carried out qualitatively, combining and validating the results from experts on the variables and factors proposed and analyzed using the Delphi method. The following is a production process activity, variable X of this study, and validated by experts, which is the output of the innovation process of the identify opportunities stage.

Var	Production Process Activity					
No.	Variable	Sub Variabel				
Cutti	ng & Heading					
X1	Bar Cutting	Place the PC Bar Coil on the PC Bar reel				
		Make PC Bar cuts using a bar cutter				
X2	Bar Heading	The emphasis on the PC Bar ends as the Heading Bar on the heading machine				
Form	ing & Setting					
X3	Cage Forming	PC Bars that have been subjected to the heading process are installed in the holes in the cage forming machine				
		Assembling PC Bar with an automatic cage forming machine with:				
		-Setting reinforcement data on the monitor screen -Mechanical settings on the driving machine (PC Bar Settings, Iron Wire, and welding current conductor distance)				
X4	Joint Plate and Pencil Shoe	Lifting the PC Bar assembly to the setting area using a spreader beam				
	Setting	Installing the joint plate on the iron assembly				
Installing the end plate on the join		Installing the end plate on the joint plate and tightening				
		the nuts and bolts on the end plate				
		Installation of pencil shoes				
X5	Cage Setting	Lifting the PC Bar assembly that has accessories installed on the mould using a spreader beam				
		Installing the pedestal iron				
Casti	ng					
X6	Concrete Mix Design	Designing the Job Mix Formula				
X7	Batching Plant	Request for concrete quality				
		Distribution of concrete from the batching plant				
X8	Concrete Mixing	Making concrete mix on the batching plant				
X9	Slump Test	Performing slump tests				
X10	Concrete	Put on a temporary stopper on the edge of the mould				
	Feeding	Pouring the concrete mix according to the reference on				
		the mould and assembly				
Clean the edges of the mould		Clean the edges of the mould from the remains of the				
~		concrete				
Stres	sing & Spinning					
X11	Mould	Close the mould by placing the top mould				
	Fastening	Eyebolt tightening on both sides simultaneously and sequentially using an impact wrench				
X12	Stressing	Placing the mould on the stressing bed				
		PC Bar withdrawal, recording, and checking elongation				

Table 2 Innovation Manufacturing Method Factors

Var	Production Process Activity						
No.	Variable	Sub Variabel					
X13	Spinning	Set the product size on the spinning machine					
		Mould rotation using a spinning tool					
Curi	ng & Demoulding						
X14	Steam Curing	Placing the mould in the steam curing pit					
		Installing the thermocouple					
		Close the curing pit					
		Log on and check the time and temperature of the steam curing process					
X15	Compressive Test	Cylinder object test					
X16	Demoulding	Product lifting and unloading (handling)					
		Remove the eyebolt using an impact wrench					
		Removing Spun Pile products from the mould					
X17	Mould Cleaning &	Immediately clean the outside of the mould from concrete dirt					
	Oiling	Lubricate the mould					
X18	Inspection &	Product inspections					
	Labeling	Defect product control					
		Repair defect products					
		Product labeling					
		Coating joint plate on products that meet standards					
X19	Delivery	Product loading to trailer truck					
		Delivery of products using a trailer truck					

3.2 Innovation Manufacturing Method Risks

Analyzing innovation manufacturing methods risk is the stage of the create concept innovation process where this is a way to determine the high level or dominant risk. There are 66 identified risks from validated production process activities. Each risk is analyzed according to the 6th PMBOK Risk Management [8] by validating respondents, as the validate concept stage of the innovation process, from several companies in Indonesia regarding the frequency and impact of each risk to obtain a risk ranking.

In	cutting	&	heading,	there	are	4	risks
----	---------	---	----------	-------	-----	---	-------

Table 3 Cutting & Heading Risks

Cutting & Heading							
Var	Production Process Activity		Rank	Risk Description			
No.	Variabel	Sub Variable					
X1	Bar Cutting	Make PC Bar cuts using a bar cutter	2	The length of the PC Bar is not by the standard			

Cutting & Heading							
Var No.	Productio	on Process Activity	Rank	Risk Description			
	Variabel	Sub Variable					
X2	Bar Heading	The emphasis on the PC Bar ends as the Heading Bar on the heading machine	6	PC Bars are not the same length in one diameter, so the tensile force is not spread evenly (concentrated on the PC Bar which is longer) during the stressing process			
X2	Bar Heading	The emphasis on the PC Bar ends as the Heading Bar on the heading machine	16	The form of the heading that is made does not meet the standard			
X1	Bar Cutting	Place the PC Bar Coil on the PC Bar reel	65	PC Bar coiled			

Then forming & setting there are 19 risks

Forn	Forming & Setting						
Var	Productio	on Process Activity	Rank	Risk Description			
No.	Variable	Sub Variable					
X3	Cage Forming	Assembling PC Bar with an automatic cage forming machine with: -Setting reinforcement data on the monitor screen -Mechanical settings on the driving machine (PC Bar Settings, Iron Wire, and welding current conductor distance)	3	Spalling or product breakage when the pile head is driven because the iron wire is not up to standard			
X5	Cage Setting	Installing the pedestal iron	8	Loose support iron inhibits the stressing process			
X4	Joint Plate and Pencil Shoe Setting	Installation of pencil shoes	10	Anchor reinforcement out of the surface of the spun pile (not in the spun pile concrete)			

Forn	Forming & Setting							
Var	Productio	on Process Activity	Rank	Risk Description				
No.	Variable	Sub Variable						
X3	Cage Forming	PC Bars that have been subjected to the heading process are installed in the holes in the cage forming machine	18	PC Bar breaks during the stressing process because the tensile force is not evenly distributed				
X4	Joint Plate and Pencil Shoe Setting	Installing the joint plate on the iron assembly	30	The product is porous and bends in the area where the joint plate meets				
X3	Cage Forming	Assembling PC Bar with an automatic cage forming machine with: -Setting reinforcement data on the monitor screen -Mechanical settings on the driving	33	The iron wire coming out of the concrete surface (the inside part)				
X3	Cage Forming	machine (PC Bar Settings, Iron Wire, and welding current conductor distance) Assembling PC Bar with an automatic cage forming machine with: -Setting reinforcement data on the monitor screen -Mechanical settings on the driving machine (PC Bar Settings, Iron Wire, and welding current conductor distance)	36	Reinforcement data does not match the product being made				
X4	Joint Plate and Pencil Shoe Setting	Installation of pencil shoes	41	The finishing pencil is not neat, and there are shrinkage cracks				

Forn	Forming & Setting							
Var	Productio	on Process Activity	Rank	Risk Description				
No.	Variable	Sub Variable						
X4	Joint Plate and Pencil Shoe Setting	Installation of pencil shoes	46	The Pencil Shoe is asymmetrical				
X4	Joint Plate and Pencil Shoe Setting	Installing the end plate on the joint plate and tightening the nuts and bolts on the end plate	47	The joint plate is not installed correctly so that the PC Bar comes out of the surface of the joint plate				
X3	Cage Forming	Assembling PC Bar with an automatic cage forming machine with: -Setting reinforcement data on the monitor screen -Mechanical settings on the driving machine (PC Bar Settings, Iron Wire, and welding current conductor distance)	50	Slanted iron series, not according to product standards				
X4	Joint Plate and Pencil Shoe Setting	Installing the end plate on the joint plate and tightening the nuts and bolts on the end plate	54	Random material is also cast in the concrete product				
X3	Cage Forming	Assembling PC Bar with an automatic cage forming machine with: -Setting reinforcement data on the monitor screen -Mechanical settings on the driving machine (PC Bar Settings, Iron Wire, and welding current conductor distance)	57	Welding is detached from the surface of the PC Bar				

Form	Forming & Setting					
Var	Productio	on Process Activity	Rank	Risk Description		
No.	Variable	Sub Variable				
X4	Joint Plate and Pencil Shoe Setting	Installing the joint plate on the iron assembly	57	Product head spalling (chipped), broken		
X4	Joint Plate and Pencil Shoe Setting	Installation of pencil shoes	59	The pencil shoe is detached from the main body spun pile		
X4	Joint Plate and Pencil Shoe Setting	Lifting the PC Bar assembly to the setting area using a spreader beam	61	The assembly fell from a great height while lifting it to the setting area		
X5	Cage Setting	Lifting the PC Bar assembly that has accessories installed on the mould using a spreader beam	62	The spreader beam is damaged while lifting the PC Bar assembly to the mould		
X4	Joint Plate and Pencil Shoe Setting	Lifting the PC Bar assembly to the setting area using a spreader beam	63	The spreader beam was damaged during lifting to the setting area		
X5	Cage Setting	Lifting the PC Bar assembly that has accessories installed on the mould using a spreader beam	66	The assembly falls from a height during lifting onto the mould		

Then in casting, there are 11 risks

Table 5 Casting

Casting						
Var No.	Production Process Activity		Rank	Risk Description		
	Variable	Sub Variable				
X10	Concrete Feeding	Clean the edges of the mould from the remains of the concrete	6	The mould is deformed		
X9	Slump Test	Performing slump tests	13	The ready mix does not meet the requirements and is rejected		
X8	Concrete Mixing	Making concrete mix on the batching plant	15	Poor aggregate gradation		

Casting				
Var	Productio	on Process Activity	Rank	Risk Description
No.	Variable	Sub Variable		
X7	Batching Plant	Distribution of concrete from the batching plant	17	Spun piles lack concrete mix halfway through feeding concrete
X10	Concrete Feeding	Put on a temporary stopper on the edge of the mould	20	Concrete spilled or scattered during the pouring
X8	Concrete Mixing	Making concrete mix on the batching plant	21	Concrete segregation
X10	Concrete Feeding	Pouring the concrete mix according to the reference on the mould and assembly	21	The thickness of the spun pile is less than the plan
X6	Concrete Mix Design	Designing the Job Mix Formula	25	Failure of design mix formula
X7	Batching Plant	Request for concrete quality	50	The quality of the ready mix that was ordered was wrong
X10	Concrete Feeding	Clean the edges of the mould from the remains of the concrete	50	Mould cannot be closed properly
X7	Batching Plant	Distribution of concrete from the batching plant	59	Wrong quality of the ready mix sent

Stressing & spinning have 7 risks

Table 6 Stressing & Spinning Risk

Stressing & Spinning						
Var No.	Production Process Activity		Rank	Risk Description		
	Variable	Sub Variable				
X13	Spinning	Spinning process	1	Honeycomb concrete due to imperfect compaction		
X11	Mould Fastening	Eyebolt tightening on both sides simultaneously and sequentially using an impact wrench	4	Loss of cement paste during the spinning process so that the product surface performance is not solid and neat		

Stressing & Spinning					
Var Production Pr		on Process Activity	Rank	Risk Description	
No.	Variable	Sub Variable			
X11	Mould Fastening	Eyebolt tightening on both sides simultaneously and sequentially using an impact wrench	5	Eyebolt ejected during the spinning process	
X12	Stressing	Placing the mould on the bed stressing	8	PC Bar broke due to stressing failure (inappropriate positioning)	
X12	Stressing	PC Bar withdrawal, recording, and checking elongation	14	Elongation exceeds the tolerance limit of $\pm 5\%$	
X11	Mould Fastening	Close the mould by placing the top mould	18	Mould cannot be closed completely	
X13	Spinning	Set the product size on the spinning machine	47	Rotation speed - rpm and time are not up to standard	

Last, Curing & Demoulding has 25 ri	sks
-------------------------------------	-----

Table 7 Curing & Demoulding Risks

Curing & Demoulding					
Var	Production	n Process Activity	Rank	Risk Description	
No.	Variable	Sub Variable			
X19	Delivery	Delivery of products using a trailer truck	11	Cracked product	
X14	Steam Curing	Close the curing pit	12	A lot of steam is wasted due to the pit not being tightly closed	
X18	Inspection & Labeling	Repair defect product	21	Defective products cannot be saved	
X18	Inspection & Labeling	Defect product control	24	Defective products are mixed up and difficult to detect	
X16	Demoulding	Remove the eyebolt using an impact wrench	26	The impact wrench pump is damaged, so it cannot work optimally	
X16	Demoulding	Remove the eyebolt using an impact wrench	27	The eyebolt ejects/ thrown when released	

Curir	Curing & Demoulding					
Var	Productio	n Process Activity	Rank	Risk Description		
No.	Variable	Sub Variable				
X18	Inspection & Labeling	Product labeling	28	The product has no identity		
X14	Steam Curing	Placing the mould in the steam curing pit	29	The amount of product that fits the curing pit is not optimal		
X16	Demoulding	Remove Spun Pile products from the mould	31	Curved products due to non- straight moulding (improper)		
X17	Mould Cleaning & Oiling	Immediately clean the outside of the mould from concrete dirt	32	Deformation mould		
X17	Mould Cleaning & Oiling	Lubricate the mould	33	Untidy concrete surface		
X14	Steam Curing	Installing the thermocouple	35	Broken thermocouple		
X19	Delivery	Delivery of products using a trailer truck	36	The product crushes alternating chains to hinder the transfer of the product		
X15	Compressive Test	Cylinder object test	38	Creep on concrete		
X15	Compressive Test	Cylinder object test	39	Concrete bonds and prestress are not optimal		
X19	Delivery	Product loading to trailer truck	40	The product lineup is collapsing		
X16	Demoulding	Remove Spun Pile products from the mould	42	The spun pile product rolled against another object until it cracked		
X17	Mould Cleaning & Oiling	Lubricate the mould	43	Oil puddle		
X18	Inspection & Labeling	Product inspection	44	There are defective products that pass QC		
X15	Compressive Test	Cylinder test object test	45	Inadequate cross-section capacity		
X19	Delivery	Product loading to trailer truck	49	The chain sling is crushed by the product, thereby hindering the movement of the product		

Curing & Demoulding					
Var	Production Process Activity		Rank	Risk Description	
No.	Variable	Sub Variable			
X17	Mould Cleaning & Oiling	Immediately clean the outside of the mould from concrete dirt	53	The spinning process disturbed due to concrete dirt that sticks	
X14	Steam Curing	Log on and checking the time and temperature of the steam curing process	55	The steam curing process is not carried out according to the rules (time standard)	
X16	Demoulding	Product lifting and unloading (handling)	56	Twisted chain slings	
X18	Inspection & Labeling	Coating joint plate on products that meet standards	64	The color of the joint plate coating does not match the company's identity	

3.3 High Risk Analysis

In this study, 1 high risk was found, which became the dominant risk, namely Honeycomb concrete due to imperfect compaction risk, in the spinning process activity. The following is the development solutions stage in the innovation process by producing a risk analysis and providing suggestions that have been corrected and adapted to this risk.

High	High Risk: Spinning Process					
Var No.	Risk Description	Cause	Preventive action	Impact	Corrective Action	
X13	Honeycomb concrete due to imperfect compaction	Dry ready mix due to late spinning process	Conditioning the slump value according to the spun pile cycle	Product defect	Grouting	
		Loss of ready mix pasta (leaking) due to moulds that are not entirely closed	Carry out activities to ensure that the mould is completely closed (Eyebolts must be installed on both sides along the mould)			

High Risk: Spinning Process					
Var No.	Risk Description	Cause	Preventive action	Impact	Corrective Action
		Unstable aggregate gradation	Sieve when pouring concrete into the mould		

3.4 Additional Activities on Spun Pile Workflow

In addition to analyzing high risk, additional activities on spun pile workflow are generated from 66 risk factors in the form of preventive actions in the following table, which are gray.

Table 9 Additional Activities on Spun Pile Workflow

Var No.	Production Process Activity				
	Variable	Sub Variabel			
Cutti	ng & Heading				
X1	Bar Cutting	Operator inspection			
		Tools and machine condition check			
		Checking the PC Bar is clean from rust and defects			
		Check the position of the stopper			
		Place the PC Bar Coil on the PC Bar reel			
		Make PC Bar cuts using a bar cutter			
X2	Bar Heading	Operator inspection			
		Tools and machine condition check			
		Vise check			
		Check pressure plate			
		Check the clamping device			
		The emphasis on the PC Bar ends as the Heading Bar on the heading machine			
Form	ning & Setting				
X3	Cage	Operator inspection			
	Forming	Tools and machine condition check			
		Checking PC Bar clean of rust, defects, and the amount according to shop drawings			
		PC Bars that have been subjected to the heading process are installed in the holes in the cage forming machine			
		Assembling PC Bar with an automatic cage forming machine with: -Setting reinforcement data on the monitor screen -Mechanical settings on the driving machine (PC Bar			

Var No.		Production Process Activity
	Variable	Sub Variabel
		Settings, Iron Wire, and welding current conductor distance)
X4	Joint Plate	Operator inspection
	and Pencil Shoe Setting	Lifting the PC Bar assembly to the setting area using a spreader beam
		Check the condition of accessories
		Check the condition of the joint plate
		Installing the joint plate on the iron assembly
		Installing the end plate on the joint plate and tightening the nuts and bolts on the end plate
		Installation of pencil shoes
		Checking the reinforcement attached to the PC Bar or iron wire and is in the thickness of the Spun Pile product concrete
X5	Cage Check	Check the number of PC Bars installed
		Checking the diameter of the PC Bar
		Check the diameter of the iron wire
	Check the spacing of the spiral iron wire	
		Check the PC Bar length
		Check the condition of the joint plate, tension rod, pencil shoe
		Check the installation of eye bolts
X6	Cage Setting	Operator inspection
		Tools and machine condition check
		Lifting the PC Bar assembly that has accessories installed
		on the mould using a spreader beam
~ •		Installing the pedestal iron
Casti	ng	
X 7	Concrete Mix Design	Designing the Job Mix Formula
X8	Batching	Request for concrete quality
VO	Plant	Distribution of concrete from the batching plant
X9	Mixing	Making concrete mix on the batching plant
X10	Slump Test	Performing slump tests
X11	Concrete	Operator inspection
	reeding	Put on a temporary stopper on the edge of the mould
		Pouring the concrete mix according to the reference on the mould and assembly

Var No.		Production Process Activity			
	Variable	Sub Variabel			
		Clean the edges of the mould from the remains of the concrete			
Stress	sing & Spinnin	g			
X12	Mould	Operator inspection			
	Fastening	Ensuring molds and mold covers are in the same code/labeling			
		Close the mould by placing the top mould			
		Tools and machine condition check			
		Eyebolt tightening on both sides simultaneously and sequentially using an impact wrench			
X13	Stressing	Operator inspection			
		Checking the condition of tools and machines and ensuring that the mold is completely closed			
		Placing the mould on the stressing bed			
		PC Bar withdrawal, recording, and checking elongation			
X14	Spinning	Operator inspection			
		Tools and machine condition check			
		Set the product size on the spinning machine			
<i>c</i> ·		Mould rotation using a spinning tool			
Curin N15	ig & Demouldi	ng			
X15	Steam	Operator inspection			
	Curing	1 ools and machine condition check			
		Placing the mould in the steam curing pit			
		Installing the thermocouple			
		Close the curing pit			
		curing process			
		Checking the test sample also carries out the same concrete treatment as the Spun Pile product batch			
X16	Compressive	Operator inspection			
	Test	Tools and machine condition check			
		Cylinder object test			
X17	Demoulding	Operator inspection			
		Tools and machine condition check			
		Product lifting and unloading (handling)			
		Remove the eyebolt using an impact wrench			
		Removing Spun Pile products from the mould			
X18	Mould	Immediately clean the outside of the mould from concrete			
	Cleaning &	dirt			

Var No.	ar Production Process Activity o.				
	Variable	Sub Variabel			
	Oiling	Lubricate the mould			
		Make sure the mold is in straight condition			
X19	Inspection &	Product inspections			
	Labeling	Defect product control			
		Repair defect products			
		Product labeling			
		Coating joint plate on products that meet standards			
X20 Stock Yard/ Operator inspection		Operator inspection			
	Air Curing	Tools and machine condition check			
		Examination of environmental conditions			
		Placing block beams above ground level/rigid			
		Carry out the placement of the arrangement of beams adjusted to the size, diameter, and length and given a code			
X21	Delivery	Operator inspection			
	-	Tools, machine, and trailer truck condition check			
		Product loading to trailer truck			
		Delivery of products using a trailer truck			

4. Conclusion

This research resulted in the current spun pile production process activities in Indonesia, risk identification based on each production process activity, which resulted in recommendations for additional activities on spun pile workflow in the form of preventive actions. Using the risk approach and ISO 56002 process innovation process stages, 66 risks were analyzed. And resulted with 1 high risk, namely honeycomb concrete, due to imperfect compaction risk in the spinning process. This risk was then analyzed to increase a company's competitiveness in facing market competition.

References

[1] ap3i-indonesia | Sejarah dan Kegiatan AP3I. (2020). http://www.ap3i

indonesia.org/sejarah-dan-kegiatan-ap3i/

[2] Sundari, T., & Afiatna, F. A. N. F. (2021). Analisis Kekuatan U-Ditch

Pracetak Untuk. 2-6.

[3] Noerpratomo, A. (2018). Pengaruh persediaan bahan baku dan proses produksi

terhadap kualitas produk di CV. Banyu Biru Connection. Jurnal

Manajemen Dan Bisnis (Almana), 2(2), 20–30.

- [4] Moazzam Azeem, Muhammad Jamaludin Thaheem, Fahim Ullah, S. Q.
 (2020). Competitiveness in the construction industry: A contractor's perspective on barriers to improving the construction industry performance. *Journal of Construction Engineering, Management & Innovation*, 3(3), 193–219. https://doi.org/10.31462/jcemi.2020.03193219
- [5] Cipto Hartono SE As, AAIK, A. (n.d.). Berinovasi dengan Manajemen Risiko – Indonesia Risk Management Professional Association. Retrieved October 11, 2022, from <u>https://irmapa.org/berinovasi-dengan-</u> manajemen-risiko/
- [6] Porter., M. E. (2008). Competitive Advantage (Keunggulan Bersaing): Menciptakan dan Mempertahankan Kinerja Unggul. Kharisma Publishing.
- [7] Cravens, D. W. (1996). Pemasaran Strategis. Erlangga.
- [8] Project Management Institute. (2017). A Guide to the Project Management Body of Knowledge (PMBOK Guide) Sixth Edition. Newton Square.
- [9] Thomas S. Bateman, S. A. S. (2009). Management: Leading & Collaborating in a Competitive World. McGraw Hill.
- [10] ISO. 2019. ISO 56002: Innovation Management Innovation Management System.

The second International Conference on Scientific Research and Innovation (2ICSRI 2023)

Organized by

CARLAND PUBLISHING 5 QUALITY CONFERENCES

Oakland Publishing and Quality Conferences Ohio Publishing and Academic Services

Cincinnati, OH, United States, May 3-4, 2023

Acceptance Letter

Date: 07/03/2023

Manuscript Title: Innovation of Spun Pile Manufacturing Method in Indonesia Using a Risk Approach and ISO 56002 Innovation Process to Increase Competitiveness. Manuscript ID: 2ICSRI- 4235

Dear Amanda Yohanna Pasaribu, Yusuf Latief, Ranti Hidatawanti, Rossy Armyn Machfudiyanto and Leni Sagita Riantini,

We are pleased to inform you that the manuscript with the above title has been accepted for oral presentation in the Second International Conference on Scientific Research & Innovation (2ICSRI 2023), organized by <u>Oakland Publishing and Quality</u> <u>Conferences</u>, and <u>Ohio Publishing and Academic Services</u>, which will be held in Cincinnati, OH, United States, May 3-4, 2023, and the publication will be in AIP Conference Proceedings (E-ISSN:1551-7616). The concept note and draft agenda will be sent to you at a later time.

We look forward to your attendance.

Thank you very much for your participation.

Justin Link

Prof. Dr. Justin Link Scientific Chairman

Haider Raad Assoc. Prof. Dr. Haider Raad Publication Chairman Thas Al-Jadir Dr. Thaer Al-Jadir

Organizing Chairman

Publishing

The second International Conference on Scientific Research and Innovation (2ICSRI 2023)

Organized by

Oakland Publishing and Quality Conferences Ohio Publishing and Academic Services

Cincinnati, OH, United States, August 25-26, 2023

Acceptance Letter

Date: 07/03/2023

Manuscript Title: Innovation of Spun Pile Manufacturing Method in Indonesia Using a Risk Approach and ISO 56002 Innovation Process to Increase Competitiveness. Manuscript ID: 2ICSRI- 4235

Dear Amanda Yohanna Pasaribu, Yusuf Latief, Ranti Hidatawanti, Rossy Armyn Machfudiyanto and Leni Sagita Riantini,

We are pleased to inform you that the manuscript with the above title has been accepted for oral presentation in the Second International Conference on Scientific Research & Innovation (2ICSRI 2023), organized by <u>Oakland Publishing and Quality</u> <u>Conferences</u>, and <u>Ohio Publishing and Academic Services</u>, which will be held in Cincinnati, OH, United States, August 25-26, 2023, and the publication will be in AIP Conference Proceedings (E-ISSN:1551-7616). The concept note and draft agenda will be sent to you at a later time.

We look forward to your attendance.

Thank you very much for your participation.

Justin Link

Prof. Dr. Justin Link Scientific Chairman

Haider Raad Assoc. Prof. Dr. Haider Raad Publication Chairman

Thas Al-Jadir Dr. Thaer Al-Jadir Organizing Chairman

Publishing

Amanda Yohanna Pasaribu <amanda.yohanna11@ui.ac.id>

2ICSRI 2023 submission 4235

2 pesan

2ICSRI 2023 <2icsri2023@easychair.org> Kepada: Amanda Yohanna Pasaribu <amanda.yohanna11@ui.ac.id> 20 Februari 2023 pukul 00.35

Dear authors,

we have the following question about your submission to 2ICSRI 2023 entitled

Innovation Manufacturing Method of Precast Concrete for Spun Pile Products at Precast Construction Company in Indonesia with a Risk Approach and ISO 56002 Innovation Process to Increase Competitiveness.

Please follow the revewers comments carefully within THREE days or the paper maybe rejected.

Revewer 1:

- I think at least two sources should be added to increase the scientific value.

- The author needs more clarification in the conclusion section and this paper in its current condition is almost like a review study. It's required to rewrite the methodology and refer to tables in text.

- In abstract section : Author did not clearly state his findings (Results).required to write the the results briefly in last of abstraction.

- Source of Figure (1)should be mentioned

- Source of table (2) ?

Revewer 2:

- The title of this work is very long;

- The abstract of this work is very long (The conference abstract should contain between 100 and 200 words).

- Please add the (ISO 56002) in the keywords;

- References are not used strictly by the author.

Objectives

- The excessive length of the article made the objectives unclear, even though it was very important research.

-Data should be added to the results obtained because the article lacks this.

-The maximum number of pages required is 12, including references. But this paper contains 23 pages.

-The paper should not be less than 3000 words and not more than 6000 words. The submitted article contains more than 30,000 words.

- Why didn't the author explain the results he obtained with graphs?

-Research is always based on illustrative results, with graphs and they are missing in this article.

Best regards, Mohammed Muayad Ta.

Amanda Yohanna Pasaribu <amanda.yohanna11@ui.ac.id> Kepada: 2ICSRI 2023 <2icsri2023@easychair.org> 22 Februari 2023 pukul 22.57

Thank you for the review, insights, and the opportunity, I would like to answer the questions in the following Question Reviewer 1: - I think at least two sources should be added to increase the scientific value. Answer: References have been added - The author needs more clarification in the conclusion section and this paper in its current condition is almost like a review study. It's required to rewrite the methodology and refer to tables in text.

Answer: The additional activities on spun pile workflow has been rewriten in the form of a workflow in Figure 7

- In abstract section : Author did not clearly state his findings (Results).required to write the the results briefly in last of abstraction.

Answer: Research findings have been added to the abstract

- Source of Figure (1)should be mentioned

Answer: Figure 1 is processed by the author, and in the file update, figure (1) has been moved to the results section - Source of table (2)?

Answer: Table (2) is also from the author observations and interviews conducted in this study

Question Revewer 2:

- The title of this work is very long;

Answer: The title has been changed from "Innovation Manufacturing Method of Precast Concrete for Spun Pile Products at Precast Construction Company in Indonesia with a Risk Approach and ISO 56002 Innovation Process to Increase Competitiveness" to "Innovation of Spun Pile Manufacturing Method in Indonesia Using a Risk Approach and ISO 56002 Innovation Process to Increase Competitiveness" in the updated file

- The abstract of this work is very long (The conference abstract should contain between 100 and 200 words). Answer: The abstract has been written down to 194 words in an updated file

- Please add the (ISO 56002) in the keywords; Answer: ISO 56002 keywords have been added

Answer. 150 50002 Reywords have been added

- References are not used strictly by the author.

Answer: Reference has been fixed

Objectives

- The excessive length of the article made the objectives unclear, even though it was very important research. Answer: The article has been made more comprehensive and hopefully not unclear anymore

-Data should be added to the results obtained because the article lacks this.

Answer: Data has been added to the results obtained.

-The maximum number of pages required is 12, including references. But this paper contains 23 pages.

Answer: Sorry for the inconvenience, I don't see any page limit on the guidelines. However, the updated file has been made into 12 pages.

-The paper should not be less than 3000 words and not more than 6000 words. The submitted article contains more than 30,000 words.

Answer: There are less than 6000 words and 34,325 characters in the previous file. And in the updated file, there are 12 pages with words between 3000 and 6000.

- Why didn't the author explain the results he obtained with graphs? Research is always based on illustrative results, with graphs and they are missing in this article.

Answer: The 66 risks obtained have been made into a risk level graph in figure 6

Hopefully this research can be considered and accepted at this conference. Let me know if you have any more questions.

Amanda Yohanna Undergraduate Student of Civil Engineer, University of Indonesia

+6281310375946 | yohanna.pasaribu@gmail.com Jakarta, Indonesia

Create your own email signature

[Kutipan teks disembunyikan]

2ICSRI_2023_paper_4235 updated.docx 1075K

2ICSRI 2023 submission 4235 REVIEW

Question	Answer			
Reviewer 1				
I think at least two sources should be added to	References have been added.			
increase the scientific value.				
The author needs more clarification in the	The additional activities on spun pile			
conclusion section and this paper in its current	workflow has been rewriten in the form of a			
condition is almost like a review study. It's	workflow in Figure 7.			
required to rewrite the methodology and refer				
to tables in text.				
In abstract section : Author did not clearly	Research findings have been added to the			
state his findings (Results) required to write	abstract			
the the results briefly in last of abstraction.				
Source of Figure (1) should be mentioned	Figure 1 is processed by the author, and in the			
	file update, figure (1) has been moved to the			
	results section			
Source of table (2)?	Table (2) is also from the author observations			
	and interviews conducted in this study			
Revie	ewer 2			
The title of this work is very long.	The title has been changed from "Innovation			
	Manufacturing Method of Precast Concrete			
	for Spun Pile Products at Precast Construction			
	Company in Indonesia with a Risk Approach			
	and ISO 56002 Innovation Process to Increase			
	Competitiveness" to "Innovation of Spun Pile			
	Manufacturing Method in Indonesia Using a			
	Risk Approach and ISO 56002 Innovation			
	Process to Increase Competitiveness" in the			
	updated file			
The abstract of this work is very long (The	The abstract has been written down to 194			
conference abstract should contain between	words in an updated file.			
100 and 200 words).				
Please add the (ISO 56002) in the keywords.	ISO 56002 keywords have been added			
References are not used strictly by the author.	Reference has been fixed			
Obje	ctives			
The excessive length of the article made the	The article has been made more			
objectives unclear, even though it was very	comprehensive and hopefully not unclear			
important research.	anymore.			

Question	Answer	
Data should be added to the results obtained	Data has been added to the results obtained.	
because the article lacks this.		
The maximum number of pages required is	Sorry for the inconvenience, I don't see any	
12, including references. But this paper	page limit on the guidelines. However, the	
contains 23 pages.	updated file has been made into 12 pages.	
The paper should not be less than 3000 words	There are less than 6000 words and 34,325	
and not more than 6000 words. The submitted	characters in the previous file. And in the	
article contains more than 30,000 words.	updated file, there are 12 pages with words	
	between 3000 and 6000.	
Why didn't the author explain the results he	The 66 risks obtained have been made into a	
obtained with graphs? Research is always	risk level graph in figure 6	
based on illustrative results, with graphs and		
they are missing in this article.		

INNOVATION OF SPUN PILE MANUFACTURING METHOD IN INDONESIA USING A RISK APPROACH AND ISO 56002 INNOVATION PROCESS TO INCREASE COMPETITIVENESS

Abstract. As of market for precast is thriving, some activities still need to be carried out optimally and efficiently for precast concrete products by taking into account competitors locally and abroad to encourage continuous improvement necessity of productivity performance in increasing the competitiveness of companies. Thus, developing innovative methods for making precast concrete products is necessary. Focuses on a product with the highest production capacity in Indonesia, precast concrete with the rotary method spun pile. The paper aims to explore Indonesia's current precast concrete production process activities, identify risk factors, and find high risk as the basis of innovation of spun pile manufacturing methods. This goal was achieved using qualitative research, combining and validating the results from experts on production process activities and risk factors, which were analyzed using the Delphi method and ISO 56002. The findings of this study are focused on the dominant risk, honeycomb concrete, from the spinning process activity. This study resulted in an innovation process of high-volume fly ash cementitious mixtures for cement grout injection on honeycomb concrete and additional preventive activities on spun pile workflow, generated from 66 risk factors to increase a company's competitiveness in facing market competition.

Keywords: Innovation, Manufacturing Methods, Precast Concrete, Risk, Competitiveness, ISO 56002

1. Introduction

With the construction industry increasingly turning to precast concrete, the demand for precast is thriving. The lack of literature studies discussing precast concrete productivity by exploring the activities carried out in making precast concrete has resulted in poor analysis to develop precast concrete manufacturing activities (production process activities) currently in Indonesia. Previous studies found that companies achieve competitive advantage through innovation, one of which is the production process. There is a positive relationship between activities in the production area and company competitiveness by optimizing production flows with the most sophisticated production processes through innovation [1]. Thereof identifying the current precast concrete production process activities in Indonesia is needed to increase the competitiveness of products, product attractiveness, product quality, and competitive prices [2]. The use of precast products, methods, and technology in the precast industry in Indonesia is expected to have a corporate strategy, namely, innovation in the activity method of the precast concrete production process for buildings and infrastructure. Work methods significantly influence quality changes with increasingly fierce competition between companies, encouraging each company to create products that improve product quality, estimate material availability, and determine production schedules so that it is completed according to demand [2].

Good activity planning will encourage the marketing strategy to have competitiveness. The long-term marketing strategy does not forget how the products and production technology, as well as the methods used to control the production process, are the company's characteristics from competing companies. One of the competitive forms of modern marketing is the process of deploying innovative products with new services, new methods, new technologies, and new processes [3]. The traditional mass-production model is no longer suitable for today's market competition. Companies must compete to find solutions to increase their competitiveness [4]. Thus it is necessary to explore and innovate in making precast concrete. Precast concrete products generally are made of non-rotary and rotary methods. This research focuses on a product with the highest production capacity in Indonesia, precast concrete with the rotary method spun pile [1]. Risk management provides a methodology that can be used to see and manage the future with a scientific, structured, and comprehensive approach. The risk identification process can be essential in developing implemented innovations. By correctly understanding that risk is not just downside risk in the form of threats, organizations naturally identify top risks that can support the creation of opportunities and ensure that these opportunities support innovation with a proper innovation process from ISO 56002 [5].

2. Materials and Methods

2.1 Spun Pile Manufacturing Product in Indonesia

Availability Production Capacity

Source: AP3I, 2020 [6]

The trend of precast concrete production is increasing every year, except for the impact of the Covid-19 pandemic on the precast industry, requiring precast concrete production capacity to grow as well, as of market for precast is thriving. According to data from AP3I Members, Indonesia provided a production capacity of 24.6 million tonnes per year from a total of 57 factories. In 2015 it increased to 25.3 million tonnes per year from 58 factories. In 2016 it increased to 26.8 million tonnes per year from a total of 63 factories, and in 2017 it increased to 34 million tons per year from a total of 76 AP3I Member factories [1]. Figure 1 shows the production capacity of product availability in Indonesia, which AP3I reviewed in 2020, where the highest precast concrete product is spun pile [6].

Source: Satyadharma, 2022 [7]

In Figure 1, Indonesia's spun pile production begins with mould setup, mould cleaning, reinforcement preparation and assembly, casting, stressing, concrete compaction with spinning, and curing. One of the most important things in the spun pile production process pile is the production capacity of the pile itself. The optimum of each process stage determines production capacity [7].

From this spun pile process activity, research was carried out in more depth with interviews, observation, and expert validation to identify the goals and objectives of each activity to identify risks.

2.2 Company Competitiveness

Company competitiveness is part of a form of ability or advantage that is used as a strategic plan in creating part of the accumulated value of the company and is not carried out by competitors, and is difficult for competitors to imitate [8]. Competitiveness is the company's ability to compete with its competitors. Therefore, every company must have a competitive strategy and competitive advantage focused on dynamic processes [9].

The construct of company competitiveness, the Y variable in this research, is the superior ability of a company to provide more value to its products than its competitors through a dynamic process with cost, quality, and time [10].

2.3 Risk Management

According to PMBOK 6th edition [11], there are several stages in carrying out risk management. Namely, there are risk management plans, risk identification, qualitative risk analysis, quantitative risk analysis, risk response planning, risk response implementation, and risk monitoring. The following is a discussion of risk management based on PMBOK 6th edition that is done in this study:

- Risk management planning is the process of defining how to carry out risk management activities.
- Identify Risks is the process of identifying overall risks and sources of risk and documenting their characteristics. The main benefit of this process is the documentation of existing risks and overall sources of risk [11]. Methods as tools and techniques that can be used vary, one of which is to make a checklist. This risk list can be developed based on information collected from the company.

- Perform qualitative risk analysis to improve the production performance of precast concrete manufacturing effectively, and this can be done by focusing on risks with the highest priority or high level. Qualitative risk analysis is used to test the priorities of the risk list that have been identified.
- Perform quantitative risk analysis is the process of numerically analyzing the combined effect of identified risks and other sources of uncertainty on the overall objective [11]. From the risk list, it can be determined the level of influence of the risks that have been identified. Data is collected through interviews and questionnaires given to experts (expert judgment).
- Plan risk response is carried out to increase opportunities and reduce threats to objectives. In that case, a risk response is developed, which becomes a recommendation for an innovative precast concrete method.
- Implement Risk Response is the process of implementing an agreed risk response plan. After the innovation recommendations for the manufacturing method pass the risk response plan, the innovation recommendations can be implemented according to the decision letter completed by the company.
- Monitor risk is the process of monitoring the implementation of agreed risk response plans, tracking identified risks, identifying and analyzing new risks, and evaluating the effectiveness of the risk process. Monitor the risk response or innovation recommendations that have been implemented so that the risk management performance that has been carried out can be identified.

2.4 Manufacturing Method Innovation

Innovation is a process of finding new ideas, methods, tools, or something that needs to be managed in innovation management to benefit human life. Process innovation is a change that affects how the output is produced, while product innovation has the opposite definition. Namely, product innovation is a change in the actual output of the goods and the service itself [12]. Innovation management provides a general framework for developing and deploying innovation capabilities, evaluating performance, and achieving desired results.

The Plan-Do-Check-Act (PDCA) [13] cycle can be used in innovation management to enable continuous improvement of innovation management. The PDCA cycle can be applied to an innovation management system or its parts.

Figure 3 PDCA Guidelines for Innovation Management Systems Source: ISO 56002 [13]

The innovation process is carried out in 5 stages: identifying opportunities, creating concepts, validating concepts, developing solutions, and deploying solutions. The following is a design implementation of the innovation process in this study.

Innovation Process	Description	Input	Process	Output	
Identify opportuniti	Search GAP analysis and opportunities	Identification of production process activities	Archive analysis, interview, and observation	Precast Concrete manufacturing activities	
Create concepts	Efforts to fill gaps and take advantage of opportunities	Opportunity identification output	Process innovation with a risk approach	The manufacturing method's risk factors, dominant risk, and additional preventive activities.	
Validate concepts	Validate ideas and innovation concepts created	Create concepts output	Presentation and discussion of the design results of the FGD	Process innovation analysis regarding the validated production process activities	
Develop solutions	Development of ideas from validated innovation concepts	Concept validation output	Refinement of the recommendations from the FGD discussions	Suggestions that have been corrected and adapted to the results of the FGD	
Deploy solutions	Realization of the value of innovative ideas to be realized	Develop solutions output	Submission of making SOPs to carry out innovation recommendations	Implementation of innovation recommendations and monitoring of innovation implementation	

Table 1 Manufacturing Method Innovation Process

The company achieves a competitive advantage through innovation, one of which is a new production process. There is a positive relationship between activities in the production area and the competitiveness of companies by optimizing production flows with the most sophisticated production processes through innovation [14].

2.5 Frameworks

Carrying out an innovation process in developing innovative methods to reduce costs, improve quality, and timely completion of manufacturing method innovations using the most current and sophisticated production processes will increase a company's competitiveness in facing market competition. In this study, the innovation of the precast concrete method is based on the framework in figure 3, where the manufacturing method increases competitiveness by providing innovative recommendations for making precast concrete from the highest risk obtained from the objectives of each activity in the spun pile production process. The method concept emphasized the steps conducted in the production of an effective and efficient process [15].

3. Results and Discussions

3.1 Innovation Manufacturing Method Factors

Data was collected from literature studies, interviews, and observations. Interviews and observations were conducted by visiting a precast factory in Indonesia, then carried out qualitatively, combining and validating the results from experts on the variables and factors proposed and analyzed using the Delphi method. The spun pile production process is divided into cutting & heading, forming & setting, casting, stressing & spinning, and curing & demoulding activity. In Figure 4 are the activities contained therein.

3.2 Manufacturing Method Risks

Table 2 Main Activities and Variables Production Process Activities

Main	Production Process Activity				
Activities	Cutting & Heading	Forming & Setting	Casting	Stressing & Spinning	Curing & Demoulding
<mark>Variables</mark>	Bar Cutting ^{X1} Bar Heading ^{X2}	Cage Forming ^{X3} Joint Plate and Pencil Shoe Setting ^{X4} Cage Setting ^{X5}	Concrete Mix Design ^{X6} Batching Plant ^{X7} Concrete Mixing ^{X8} Slump Test ^{X9} Concrete Feeding ^{X10}	Mould Fastening ^{X11} Stressing ^{X12} Spinning ^{X13}	Steam Curing ^{X14} Compressive Test ^{X15} Demoulding ^X ¹⁶ Mould Cleaning & Oiling ^{X17} Inspection & Labelling ^{X18} Delivery ^{X19}

Analyzing manufacturing methods risk is the stage of the create concept innovation process where this is a way to determine the high level or dominant risk. There are 18 variables from the activity process within 5 main activities that contain 66 identified risks from validated sub-activity production process activities, variable X of this study. Each risk is analyzed according to the 6th PMBOK Risk Management [11] by validating respondents, as the validate concept stage of the innovation process, from several companies in Indonesia regarding the frequency and impact of each risk to obtain risk level.

The graph in figure 6 results from an analysis of filling in the risk questionnaire by respondents from several precast companies in Indonesia. There were 14 risks included in the low risk level, 51 risks in the middle risk level, and 1 high risk, which became the dominant risk in this study. Dominant risks will be analyzed in the high risk analysis and other risks will underlie additional preventive activities in the spun pile manufacturing process.

3.3 High Risk Analysis

In this study, one high risk was found, which became the dominant risk, namely honeycomb concrete due to imperfect compaction risk, in the spinning process activity. The following is the development solutions stage in the innovation process by producing a risk analysis and providing suggestions that have been corrected and adapted to this risk.

High Risk: Spinning Process						
	Risk Description	Cause	Preventive action	Impact	Corrective Action	
	Honeycomb	Dry ready mix	Conditioning the	Product	Grouting	
	concrete due	due to late	slump value	defect	_	
	to imperfect	spinning	according to the			
V 12	compaction	process	spun pile cycle			
А15		Loss of ready	Carry out activities			
		mix pasta	to ensure that the			
		(leaking) due	mould is			
		to moulds that	completely closed			
		are not	(Eyebolts must be			
		entirely closed	installed on both			
			sides along the			
			mould)			

Table 3 High Risk Analysis

Unstable	Sieve when	
aggregate	pouring concrete	
gradation	into the mould	

One of the innovations in manufacturing methods for grouting can be done with highvolume fly ash cementitious mixtures for cement grout injection. According to prior research [16], it is advised to mix cement with additional cementitious materials (SCMs), such as fly ash, silica fume, ground granulated blast-furnace slag, or others, to improve Preplace Aggregate Concrete (PAC) grout. Fly ash was found to increase grout pump ability and lengthen its handling time. Moreover, it can be considered a sustainable SCM because fly ash reduces water demand and is made from waste. In addition, it was found that substituting 33% fly ash for portland cement greatly reduced the heat of hydration. Fly ash can enhance spread and decrease flow time, delaying the setting of lean grout mixtures. Fly ash particles only start to harden after cement hydration, producing calcium hydroxide. This delayed reaction caused by the high substitution of portland cement with fly ash can double the setting time compared to pure cement grout.

3.4 Additional Activities on Spun Pile Workflow

In addition to analyzing high risk, additional activities on spun pile workflow are generated from 66 risks identified, and preventive action is needed in the spun pile manufacturing process, which experts have validated. These preventive activities include operator inspection, tools and machine condition checks, cage checks before casting, and other activities, as shown in figure 7.

Spun pile workflow consists of five main work activities. Starting with cutting & heading, there are four preventive activities before the bar cutting activity and five preventive activities before the heading bar. In forming & setting, there are 16 additional preventive activities. Furthermore, in casting, there is one preventive activity. Then in the process of stressing & spinning there are seven preventive activities. And curing & demoulding process has 15 preventive activities.

The additional activities in the spun pile work flow are the sub-activities of variable X, which total 21. These activities include:

- 1. Bar Cutting
- 2. Bar Heading
- 3. Cage Forming

- 4. Joint Plate and Pencil Shoe
 - Setting
- 5. Cage Check

- 6. Cage Setting
- 7. Concrete Mix Design
- 8. Batching Plant
- 9. Concrete Mixing
- 10. Slump Test
- 11. Concrete Feeding
- 12. Mould Fastening
- 13. Stressing

- 14. Spinning
- 15. Steam Curing
- 16. Compressive Test
- 17. Demoulding
- 18. Mould Cleaning & Oiling
- 19. Inspection & Labeling
- 20. Stock Yard/ Air Curing
- 21. Delivery

4. Conclusion

This study has identified current manufacturing methods for spun pile in Indonesia with five main work activities, including cutting & heading, forming & setting, casting, stressing & spinning, and curing & demoulding activity, conducted by Interviews and observations. Also, the study identified 66 risk factors from these activities, one dominant risk, which is honeycomb concrete due to imperfect compaction risk, in the spinning process activity. Additional preventive activities on spun pile workflow are generated from identified risk factors such as operator inspection, tools and machine condition checks, cage checks before casting, and other activities to achieve optimal and efficient spun pile manufacturing methods. With one dominant risk, the innovation of spun pile manufacturing method with honeycomb concrete can be done by high-volume fly ash cementitious mixtures for cement grout injection as corrective action.

For future study, research can be done with different types of object research by types of precast concrete products to recommend precast concrete innovation to increase a company's competitiveness in facing market competition.

5. Acknowledgement

The author expresses her deepest gratitude to the Chancellor of the University of Indonesia and the Directorate of Innovation Science Technopark (DISTP) for the grant given with announcement number ND-429/UN2.INV/PPM.00/2023 dated 03 April 2023 regarding the Announcement of Funding Recipients for the Innovation Funding Program year 2023.

References

 "ap3i-indonesia | Sejarah dan Kegiatan AP3I," 2020. http://www.ap3iindonesia.org/sejarah-dan-kegiatan-ap3i/ (accessed Oct. 11, 2022).
 A. Noerpratomo, "Pengaruh persediaan bahan baku dan proses produksi terhadap kualitas produk di CV. Banyu Biru Connection," *J. Manaj. Dan Bisnis*, vol. 2, no. 2, pp. 20–30, 2018.
 C. Li, S. Wang, and J. Tao, "Diffusion simulation of innovative products based on Lotka-Volterra," *J. Contemp. Mark. Sci.*, vol. 3, no. 2, pp. 169–193, 2020, doi: 10.1108/jcmars-01-2020-0003.
 S. Q. Moazzam Azeem, Muhammad Jamaludin Thaheem, Fahim Ullah, "Competitiveness in the construction industry: A contractor's perspective on barriers to improving the construction industry performance," *J. Constr. Eng. Manag. Innov.*, vol. 3, no. 3, pp. 193–219, 2020, doi:

10.31462/jcemi.2020.03193219.

[5]	A. Cipto Hartono SE As, AAIK, "Berinovasi dengan Manajemen Risiko –
	Indonesia Risk Management Professional Association."
	https://irmapa.org/berinovasi-dengan-manajemen-risiko/ (accessed Oct. 11,
	2022).
[6]	A. P. P. dan P. I. (AP3I, "Kapasitas Beton Pracetak dan Prategang AP3I," 2020.
[7]	W. R. Satyadharma, "Optimalisasi proses produksi tiang pancang (spun pile)
	menggunakan connector ring pada cetakan," Semin. Nas. Ins. Prof., vol. 2, no. 1,
	2022, doi: 10.23960/snip.v2i1.39.
[8]	M. E. Porter., Competitive Advantage (Keunggulan Bersaing): Menciptakan dan
	Mempertahankan Kinerja Unggul. Tangerang: Kharisma Publishing, 2008.
[9]	D. W. Cravens, <i>Pemasaran Strategis</i> . Jakarta: Erlangga, 1996.
[10]	Muhardi, Strategi Operasi: Untuk Keunggulan Bersaing. Yogyakarta: Graha
	Ilmu, 2007.
[11]	Project Management Institute., A Guide to the Project Management Body of
	Knowledge (PMBOK Guide) Sixth Edition. Newton Square, 2017.
[12]	S. A. S. Thomas S. Bateman, Management: Leading & Collaborating in a
	Competitive World. McGraw Hill, 2009.
[13]	I. O. for Standardization, "ISO 56002: Innovation Management - Innovation
	Management System," 2019.
[14]	K. (Ed Schwab, "The Global Competitiveness Report 2017-2018," World
	Econ. Forum, Geneva, 2017.
[15]	R. Hidayawanti, "Conceptual Framework for Innovation Product and Marketing
	Strategy at Precast Construction Company in Indonesia to Increase
	Competitiveness Using SWOT and Neural Network Model," no. Arai, pp. 455-
	<mark>466, 2022.</mark>
[16]	Z. Sao, "Strategies For Improving The Early Age Strength Of High-Volume Fly
	Ash Cementious Mixtures For Precast Concrete Applications And In-Situ
	Stiffening And Upgrading Of Ballasted Rail Track Beds Via Cement Grout
	Injection," Civ. Eng., no. August, pp. 1–119, 2022.

Innovation of Spun Pile Manufacturing Method in Indonesia Using a Risk Approach and ISO 56002 Innovation Process to Increase Competitiveness

Amanda Yohanna Pasaribu, Yusuf Latief, Ranti Hidayawanti, Rossy Armyn Machfudiyanto and Leni Sagita Riantini

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

September 24, 2023

1

INNOVATION OF SPUN PILE MANUFACTURING METHOD IN INDONESIA USING A RISK APPROACH AND ISO 56002 INNOVATION PROCESS TO INCREASE COMPETITIVENESS

Abstract. As of market for precast is thriving, some activities still need to be carried out optimally and efficiently for precast concrete products by taking into account competitors locally and abroad to encourage continuous improvement necessity of productivity performance in increasing the competitiveness of companies. Thus, developing innovative methods for making precast concrete products is necessary. Focuses on a product with the highest production capacity in Indonesia, precast concrete with the rotary method spun pile. The paper aims to explore Indonesia's current precast concrete production process activities, identify risk factors, and find high risk as the basis of innovation of spun pile manufacturing methods. This goal was achieved using qualitative research, combining and validating the results from experts on production process activities and risk factors, which were analyzed using the Delphi method and ISO 56002. The findings of this study are focused on the dominant risk, honeycomb concrete, from the spinning process activity. This study resulted in an innovation process of high-volume fly ash cementitious mixtures for cement grout injection on honeycomb concrete and additional preventive activities on spun pile workflow, generated from 66 risk factors to increase a company's competitiveness in facing market competition.

Keywords: Innovation, Manufacturing Methods, Precast Concrete, Risk, Competitiveness, ISO 56002

1. Introduction

With the construction industry increasingly turning to precast concrete, the demand for precast is thriving. The lack of literature studies discussing precast concrete productivity by exploring the activities carried out in making precast concrete has resulted in poor analysis to develop precast concrete manufacturing activities (production process activities) currently in Indonesia. Previous studies found that companies achieve competitive advantage through innovation, one of which is the production process. There is a positive relationship between activities in the production area and company competitiveness by optimizing production flows with the most sophisticated production processes through innovation [1]. Thereof identifying the current precast concrete production process activities in Indonesia is needed to increase the competitiveness of products, product attractiveness, product quality, and competitive prices [2]. The use of precast products, methods, and technology in the precast industry in Indonesia is expected to have a corporate strategy, namely, innovation in the activity method of the precast concrete production process for buildings and infrastructure. Work methods significantly influence quality changes with increasingly fierce competition between companies, encouraging each company to create products that improve product quality, estimate material availability, and determine production schedules so that it is completed according to demand [2].

Good activity planning will encourage the marketing strategy to have competitiveness. The long-term marketing strategy does not forget how the products and production technology, as well as the methods used to control the production process, are the company's characteristics from competing companies. One of the competitive forms of modern marketing is the process of deploying innovative products with new services, new methods, new technologies, and new processes [3]. The traditional mass-production model is no longer suitable for today's market competition. Companies must compete to find solutions to increase their competitiveness [4]. Thus it is necessary to explore and innovate in making precast concrete. Precast concrete products generally are made of non-rotary and rotary methods. This research focuses on a product with the highest production capacity in Indonesia, precast concrete with the rotary method spun pile [1]. Risk management provides a methodology that can be used to see and manage the future with a scientific, structured, and comprehensive approach. The risk identification process can be essential in developing implemented innovations. By correctly understanding that risk is not just downside risk in the form of threats, organizations naturally identify top risks that can support the creation of opportunities and ensure that these opportunities support innovation with a proper innovation process from ISO 56002 [5].

2. Materials and Methods

2.1 Spun Pile Manufacturing Product in Indonesia

Figure 1 Existing Conditions, Precast Concrete Capacity Targets, and Product

Availability Production Capacity

Source: AP3I, 2020 [6]

The trend of precast concrete production is increasing every year, except for the impact of the Covid-19 pandemic on the precast industry, requiring precast concrete production capacity to grow as well, as of market for precast is thriving. According to data from AP3I Members, Indonesia provided a production capacity of 24.6 million tonnes per year from a total of 57 factories. In 2015 it increased to 25.3 million tonnes per year from 58 factories. In 2016 it increased to 26.8 million tonnes per year from a total of 63 factories, and in 2017 it increased to 34 million tons per year from a total of 76 AP3I Member factories [1]. Figure 1 shows the production capacity of product availability in Indonesia, which AP3I reviewed in 2020, where the highest precast concrete product is spun pile [6].

Figure 2 Spun Pile Production Process Diagram

Source: Satyadharma, 2022 [7]

In Figure 1, Indonesia's spun pile production begins with mould setup, mould cleaning, reinforcement preparation and assembly, casting, stressing, concrete compaction with spinning, and curing. One of the most important things in the spun pile production process pile is the production capacity of the pile itself. The optimum of each process stage determines production capacity [7].

From this spun pile process activity, research was carried out in more depth with interviews, observation, and expert validation to identify the goals and objectives of each activity to identify risks.

2.2 Company Competitiveness

Company competitiveness is part of a form of ability or advantage that is used as a strategic plan in creating part of the accumulated value of the company and is not carried out by competitors, and is difficult for competitors to imitate [8]. Competitiveness is the company's ability to compete with its competitors. Therefore, every company must have a competitive strategy and competitive advantage focused on dynamic processes [9].

The construct of company competitiveness, the Y variable in this research, is the superior ability of a company to provide more value to its products than its competitors through a dynamic process with cost, quality, and time [10].

2.3 Risk Management

According to PMBOK 6th edition [11], there are several stages in carrying out risk management. Namely, there are risk management plans, risk identification, qualitative risk analysis, quantitative risk analysis, risk response planning, risk response implementation, and risk monitoring. The following is a discussion of risk management based on PMBOK 6th edition that is done in this study:

- Risk management planning is the process of defining how to carry out risk management activities.
- Identify Risks is the process of identifying overall risks and sources of risk and documenting their characteristics. The main benefit of this process is the documentation of existing risks and overall sources of risk [11]. Methods as tools and techniques that can be used vary, one of which is to make a checklist. This risk list can be developed based on information collected from the company.

- Perform qualitative risk analysis to improve the production performance of precast concrete manufacturing effectively, and this can be done by focusing on risks with the highest priority or high level. Qualitative risk analysis is used to test the priorities of the risk list that have been identified.
- Perform quantitative risk analysis is the process of numerically analyzing the combined effect of identified risks and other sources of uncertainty on the overall objective [11]. From the risk list, it can be determined the level of influence of the risks that have been identified. Data is collected through interviews and questionnaires given to experts (expert judgment).
- Plan risk response is carried out to increase opportunities and reduce threats to objectives. In that case, a risk response is developed, which becomes a recommendation for an innovative precast concrete method.
- Implement Risk Response is the process of implementing an agreed risk response plan. After the innovation recommendations for the manufacturing method pass the risk response plan, the innovation recommendations can be implemented according to the decision letter completed by the company.
- Monitor risk is the process of monitoring the implementation of agreed risk response plans, tracking identified risks, identifying and analyzing new risks, and evaluating the effectiveness of the risk process. Monitor the risk response or innovation recommendations that have been implemented so that the risk management performance that has been carried out can be identified.

2.4 Manufacturing Method Innovation

Innovation is a process of finding new ideas, methods, tools, or something that needs to be managed in innovation management to benefit human life. Process innovation is a change that affects how the output is produced, while product innovation has the opposite definition. Namely, product innovation is a change in the actual output of the goods and the service itself [12]. Innovation management provides a general framework for developing and deploying innovation capabilities, evaluating performance, and achieving desired results.

The Plan-Do-Check-Act (PDCA) [13] cycle can be used in innovation management to enable continuous improvement of innovation management. The PDCA cycle can be applied to an innovation management system or its parts.

Figure 3 PDCA Guidelines for Innovation Management Systems Source: ISO 56002 [13]

The innovation process is carried out in 5 stages: identifying opportunities, creating concepts, validating concepts, developing solutions, and deploying solutions. The following is a design implementation of the innovation process in this study.

Innovation Process	Description	Input	Process	Output	
Identify opportuniti	Search GAP analysis and opportunities	Identification of production process activities	Archive analysis, interview, and observation	Precast Concrete manufacturing activities	
Create concepts	Efforts to fill gaps and take advantage of opportunities	Opportunity identification output	Process innovation with a risk approach	The manufacturing method's risk factors, dominant risk, and additional preventive activities.	
Validate concepts	Validate ideas and innovation concepts created	Create concepts output	Presentation and discussion of the design results of the FGD	Process innovation analysis regarding the validated production process activities	
Develop solutions	Development of ideas from validated innovation concepts	Concept validation output	Refinement of the recommendations from the FGD discussions	Suggestions that have been corrected and adapted to the results of the FGD	
Deploy solutions	Realization of the value of innovative ideas to be realized	Develop solutions output	Submission of making SOPs to carry out innovation recommendations	Implementation of innovation recommendations and monitoring of innovation implementation	

Table 1 Manufacturing Method Innovation Process

The company achieves a competitive advantage through innovation, one of which is a new production process. There is a positive relationship between activities in the production area and the competitiveness of companies by optimizing production flows with the most sophisticated production processes through innovation [14].

2.5 Frameworks

Figure 4 Research Framework

Carrying out an innovation process in developing innovative methods to reduce costs, improve quality, and timely completion of manufacturing method innovations using the most current and sophisticated production processes will increase a company's competitiveness in facing market competition. In this study, the innovation of the precast concrete method is based on the framework in figure 3, where the manufacturing method increases competitiveness by providing innovative recommendations for making precast concrete from the highest risk obtained from the objectives of each activity in the spun pile production process. The method concept emphasized the steps conducted in the production of an effective and efficient process [15].

3. Results and Discussions

3.1 Innovation Manufacturing Method Factors

Data was collected from literature studies, interviews, and observations. Interviews and observations were conducted by visiting a precast factory in Indonesia, then carried out qualitatively, combining and validating the results from experts on the variables and factors proposed and analyzed using the Delphi method. The spun pile production process is divided into cutting & heading, forming & setting, casting, stressing & spinning, and curing & demoulding activity. In Figure 4 are the activities contained therein.

Figure 5 Current Manufacturing Methods for Spun Pile in Indonesia

3.2 Manufacturing Method Risks

Table 2 Main Activities and Variables Production Process Activities

Main	Production Process Activity				
Activities	Cutting & Heading	Forming & Setting	Casting	Stressing & Spinning	Curing & Demoulding
Variables	Bar Cutting ^{X1} Bar Heading ^{X2}	Cage Forming ^{X3} Joint Plate and Pencil Shoe Setting ^{X4} Cage Setting ^{X5}	Concrete Mix Design ^{X6} Batching Plant ^{X7} Concrete Mixing ^{X8} Slump Test ^{X9} Concrete Feeding ^{X10}	Mould Fastening ^{X11} Stressing ^{X12} Spinning ^{X13}	Steam Curing ^{X14} Compressive Test ^{X15} Demoulding ^X ¹⁶ Mould Cleaning & Oiling ^{X17} Inspection & Labelling ^{X18} Delivery ^{X19}

Analyzing manufacturing methods risk is the stage of the create concept innovation process where this is a way to determine the high level or dominant risk. There are 18 variables from the activity process within 5 main activities that contain 66 identified risks from validated sub-activity production process activities, variable X of this study. Each risk is analyzed according to the 6th PMBOK Risk Management [11] by validating respondents, as the validate concept stage of the innovation process, from several companies in Indonesia regarding the frequency and impact of each risk to obtain risk level.

The graph in figure 6 results from an analysis of filling in the risk questionnaire by respondents from several precast companies in Indonesia. There were 14 risks included in the low risk level, 51 risks in the middle risk level, and 1 high risk, which became the dominant risk in this study. Dominant risks will be analyzed in the high risk analysis and other risks will underlie additional preventive activities in the spun pile manufacturing process.

3.3 High Risk Analysis

In this study, one high risk was found, which became the dominant risk, namely honeycomb concrete due to imperfect compaction risk, in the spinning process activity. The following is the development solutions stage in the innovation process by producing a risk analysis and providing suggestions that have been corrected and adapted to this risk.

High Risk: Spinning Process									
X13	Risk Description	Cause	Preventive action	Impact	Corrective Action				
	Honeycomb	Dry ready mix	Conditioning the	Product	Grouting				
	concrete due	due to late	slump value	defect	_				
	to imperfect	spinning	according to the						
	compaction	process	spun pile cycle						
		Loss of ready	Carry out activities						
		mix pasta	to ensure that the						
		(leaking) due	mould is						
		to moulds that	completely closed						
		are not	(Eyebolts must be						
		entirely closed	installed on both						
			sides along the						
			mould)						

Table 3 High Risk Analysis

	Unstable	Sieve when	
	aggregate	pouring concrete	
	gradation	into the mould	

One of the innovations in manufacturing methods for grouting can be done with highvolume fly ash cementitious mixtures for cement grout injection. According to prior research [16], it is advised to mix cement with additional cementitious materials (SCMs), such as fly ash, silica fume, ground granulated blast-furnace slag, or others, to improve Preplace Aggregate Concrete (PAC) grout. Fly ash was found to increase grout pump ability and lengthen its handling time. Moreover, it can be considered a sustainable SCM because fly ash reduces water demand and is made from waste. In addition, it was found that substituting 33% fly ash for portland cement greatly reduced the heat of hydration. Fly ash can enhance spread and decrease flow time, delaying the setting of lean grout mixtures. Fly ash particles only start to harden after cement hydration, producing calcium hydroxide. This delayed reaction caused by the high substitution of portland cement with fly ash can double the setting time compared to pure cement grout.

3.4 Additional Activities on Spun Pile Workflow

In addition to analyzing high risk, additional activities on spun pile workflow are generated from 66 risks identified, and preventive action is needed in the spun pile manufacturing process, which experts have validated. These preventive activities include operator inspection, tools and machine condition checks, cage checks before casting, and other activities, as shown in figure 7.

Figure 7 Additional Activities on Spun Pile Workflow

Spun pile workflow consists of five main work activities. Starting with cutting & heading, there are four preventive activities before the bar cutting activity and five preventive activities before the heading bar. In forming & setting, there are 16 additional preventive activities. Furthermore, in casting, there is one preventive activity. Then in the process of stressing & spinning there are seven preventive activities. And curing & demoulding process has 15 preventive activities.

The additional activities in the spun pile work flow are the sub-activities of variable X, which total 21. These activities include:

- 1. Bar Cutting
- 2. Bar Heading
- 3. Cage Forming

- 4. Joint Plate and Pencil Shoe Setting
- 5. Cage Check

- 6. Cage Setting
- 7. Concrete Mix Design
- 8. Batching Plant
- 9. Concrete Mixing
- 10. Slump Test
- 11. Concrete Feeding
- 12. Mould Fastening
- 13. Stressing

- 14. Spinning
 15. Steam Curing
 16. Compressive Test
 17. Demoulding
 18. Mould Cleaning & Oiling
 19. Inspection & Labeling
 20. Stock Yard/ Air Curing
- 21. Delivery

4. Conclusion

This study has identified current manufacturing methods for spun pile in Indonesia with five main work activities, including cutting & heading, forming & setting, casting, stressing & spinning, and curing & demoulding activity, conducted by Interviews and observations. Also, the study identified 66 risk factors from these activities, one dominant risk, which is honeycomb concrete due to imperfect compaction risk, in the spinning process activity. Additional preventive activities on spun pile workflow are generated from identified risk factors such as operator inspection, tools and machine condition checks, cage checks before casting, and other activities to achieve optimal and efficient spun pile manufacturing methods. With one dominant risk, the innovation of spun pile manufacturing method with honeycomb concrete can be done by high-volume fly ash cementitious mixtures for cement grout injection as corrective action.

For future study, research can be done with different types of object research by types of precast concrete products to recommend precast concrete innovation to increase a company's competitiveness in facing market competition.

5. Acknowledgement

The author expresses her deepest gratitude to the Chancellor of the University of Indonesia and the Directorate of Innovation Science Technopark (DISTP) for the grant given with announcement number ND-429/UN2.INV/PPM.00/2023 dated 03 April 2023 regarding the Announcement of Funding Recipients for the Innovation Funding Program year 2023.

References

- [1] "ap3i-indonesia | Sejarah dan Kegiatan AP3I," 2020. http://www.ap3iindonesia.org/sejarah-dan-kegiatan-ap3i/ (accessed Oct. 11, 2022).
- [2] A. Noerpratomo, "Pengaruh persediaan bahan baku dan proses produksi terhadap kualitas produk di CV. Banyu Biru Connection," *J. Manaj. Dan Bisnis*, vol. 2, no. 2, pp. 20–30, 2018.
- [3] C. Li, S. Wang, and J. Tao, "Diffusion simulation of innovative products based on Lotka-Volterra," J. Contemp. Mark. Sci., vol. 3, no. 2, pp. 169–193, 2020, doi: 10.1108/jcmars-01-2020-0003.
- [4] S. Q. Moazzam Azeem, Muhammad Jamaludin Thaheem, Fahim Ullah, "Competitiveness in the construction industry: A contractor's perspective on barriers to improving the construction industry performance," *J. Constr. Eng. Manag. Innov.*, vol. 3, no. 3, pp. 193–219, 2020, doi: 10.31462/jcemi.2020.03193219.

- [5] A. Cipto Hartono SE As, AAIK, "Berinovasi dengan Manajemen Risiko Indonesia Risk Management Professional Association." https://irmapa.org/berinovasi-dengan-manajemen-risiko/ (accessed Oct. 11, 2022).
- [6] A. P. P. dan P. I. (AP3I, "Kapasitas Beton Pracetak dan Prategang AP3I," 2020.
- [7] W. R. Satyadharma, "Optimalisasi proses produksi tiang pancang (spun pile) menggunakan connector ring pada cetakan," *Semin. Nas. Ins. Prof.*, vol. 2, no. 1, 2022, doi: 10.23960/snip.v2i1.39.
- [8] M. E. Porter., *Competitive Advantage (Keunggulan Bersaing): Menciptakan dan Mempertahankan Kinerja Unggul.* Tangerang: Kharisma Publishing, 2008.
- [9] D. W. Cravens, *Pemasaran Strategis*. Jakarta: Erlangga, 1996.
- [10] Muhardi, *Strategi Operasi: Untuk Keunggulan Bersaing*. Yogyakarta: Graha Ilmu, 2007.
- [11] Project Management Institute., A Guide to the Project Management Body of Knowledge (PMBOK Guide) Sixth Edition. Newton Square, 2017.
- [12] S. A. S. Thomas S. Bateman, *Management: Leading & Collaborating in a Competitive World*. McGraw Hill, 2009.
- [13] I. O. for Standardization, "ISO 56002: Innovation Management Innovation Management System," 2019.
- [14] K. (Ed. . Schwab, "The Global Competitiveness Report 2017-2018," *World Econ. Forum, Geneva*, 2017.
- [15] R. Hidayawanti, "Conceptual Framework for Innovation Product and Marketing Strategy at Precast Construction Company in Indonesia to Increase Competitiveness Using SWOT and Neural Network Model," no. Arai, pp. 455– 466, 2022.
- [16] Z. Sao, "Strategies For Improving The Early Age Strength Of High-Volume Fly Ash Cementious Mixtures For Precast Concrete Applications And In-Situ Stiffening And Upgrading Of Ballasted Rail Track Beds Via Cement Grout Injection," *Civ. Eng.*, no. August, pp. 1–119, 2022.