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ABSTRACT 

 
Construction development development in Indonesia is growing rapidly and requires the right materials for 

infrastructure development such as roads, bridges, high-rise buildings, residential, and housing. From the existing 
infrastructure, it is needed concrete innovations such as precast so that construction can be finished more quickly 
with good quality of materials. The need for good quality and smooth supply of materials will determine the 
success of a construction project. This must also be supported by time management in order to get efficient 
completion times, affordability of prices until considering the negative environmental impact. Utilization of 
technology by using precast is one solution to this problem.  Although this issue has been done, however the 
downstream efficiency factor is increasing the competitiveness of the Construction Industry which still has to be 
continuously improved to be improved to the next stage. In this paper,  will discuss how the procurement inventory 
as raw materials with the concept of a readiness framework by using the neural network method can produce 
precast products with good quality. The purpose of this research is to innovate products and technologies used in 
the precast industry in Indonesia. The method used is to utilize the neural network to produce the best quality of 
precast results. The results of this study show that the level of influence of readiness on products and technology 
above 70% can produce an efficiency of 80% in precast production.  
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RAW MATERIAL OPTIMIZATION WITH NEURAL NETWORK 
METHOD IN CONCRETE PRODUCTION  

ON PRECAST INDUSTRY  
 

Ranti Hidayawanti1, Yusuf Latief2 
1,2Faculty of Engineering, University of Indonesia, Indonesia 

 
ABSTRACT 

 
The development of construction is presently experiencing rapid growth in Indonesia, leading to the 

requirement of the right materials for infrastructural enhancements, such as roads, bridges, high-rise residential 
buildings, and housing. From the existing infrastructure, concrete innovations such as precasts are needed with 
good quality materials, for the quick completion of constructions. This is because the need for good quality and 
smooth material helps to determine the success of a building project, with the use of technology through precast 
being a problem-solving process. Therefore, this study aims to analyze the patterns by which inventory 
procurement predictions produce precasts with good quality, using the e readiness framework concept of the neural 
network through appropriate decision-making processes. It also focuses on innovating technological products used 
in the Indonesian precast industry. The Neural Network was used to produce the best target quality time and precast 
commodities. The result indicated two outputs from 2 neural network models, using five similar input-value 
variables. Based on the Adaline neural network, the outputs were observed as the highest sales-cost predictions 
for precast products, which often occurred in 1, 5, 6 and 9 months. Besides this, production activities were also 
normally operated at level (1), with profit optimization being highly considered before months 1, 5, 6 and 9. For 
the LVQ neural network, the result was a predictive classification of class intensity levels, where fast decision-
making processes occurred in months 1, 6 and 9. Cost optimization was also carried out by ordering raw materials 
several months in advance, considering the trend in material prices and logistics. 
 
Keywords: Raw Material, Neural Network, Concrete, Precast. 
 
INTRODUCTION 

 
The Indonesian government has been undergoing 

massive infrastructural development since 2019, with 
an effect observed in the significant increase in 
precast products' demand in 2022. Based on these 
data, precast production was carried out by 76 
registered factories, which were distributed 
throughout the country. Each factory had an increase 
in production, which varied between 210,000-
500,000 tons yearly, to serve the increasing demand. 
This indicated that the average monthly production of 
each organization needs to reach 45,000 tons.  

In Indonesia, efficiency is often measured from a 
cost and time perspective, showing that the use of 
precast concrete is more efficient than conventional 
methods [1]. Although this utilization is more 
efficient, technology-based precast supply chain 
parameters still need to become effective support. 
This supply chain is classified into various phases, 
namely planning, designing, manufacturing, 
transportation, installation, and construction. To 
achieve an integrated construction, the parties in these 
phases need to have efficient communication and 
effective collaboration in providing accurate and up-
to-date information. According to the governmental 
data, the main problems in the precast supply chain 
phases began from the following, (1) poor planning, 
(2) ineffective communication between designers and 
manufacturers, (3) incompetent employees/workers, 

(4) damage to raw materials, and (5) large sizes and 
heavy precast components and coordination in the 
bad project site. Besides these conditions, the key 
issues also contributed to negative consequences on 
the efficiency, productivity and effectiveness of 
precast delivery [2]. After procurement, the damages 
to raw materials are often found to affect the quality 
of the process and precast production during the 
inventory phase (initial stage). This explains that the 
procurement division needs to be able to provide the 
certainty of scheduling receipts for efficient project 
completion when ordering raw materials. Irrespective 
of these conditions, practical raw material orders and 
assembly time have still not been highly considered, 
leading to the probable effects and implications of 
excess inventory occurrences and additional project-
financing increment, respectively. Therefore, a 
methodology should be determined for the effective, 
efficient, and economical control of precast plants’ 
inventory management [3]. 

The utilization of technology has reportedly been 
implemented widely, to support the management of 
raw materials during the inventory processes. This 
was in line with the raw material control for precast 
tunnelling projects in China [4], where many 
businesses were leveraging historical sales and 
demand data to implement intelligent inventory 
management systems. Demand forecasting involves 
predicting/ensuring the consumption/collection of 
precast raw materials. This plays an important role in 
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the area of inventory control and supply chain, due to 
enabling production and distribution planning. It is 
also conditioned to reduce raw material delivery 
times and optimize decisions on the supply chain [5]. 
This is to help the developers and operators of 
inventory management systems in improving 
efficiency, maximizing productivity, and minimizing 
material losses [6]. 

Many studies have also evaluated smart 
inventory implementation, namely the dynamic 
brick-and-mortar supply chain analysis. This 
evaluated the benefits of implementing smart 
applications and systems to improve Vendor 
Managed Inventory (VMI) efficiency. In the supply 
chain mechanism, the manufacturer configured the 
production level and replenished the inventory at the 
retailer's store, where prices were set up to affect sales 
and inventory. In this condition, the company also 
shared the revenue and inventory costs through an 
agreement. This condition was very dynamic when 
inventory increased and decreased at production and 
sales levels respectively, with periodical variations 
observed according to several stochastic errors [7]. In 
this case, the need for accurate predictions led to a 
more effective and cheap supply chain, as well as 
allowed companies to provide quality, quantity, 
periodical, and low-production cost products [8]. 
Many studies also used other machine learning 
approaches to map prediction patterns, such as fuzzy 
subtractive clustering [9].Therefore, this study aims 
to analyze the patterns by which inventory 
procurement predictions produce precast products 
with good quality, using the e-readiness framework 
concept of the neural network method through 
appropriate decision-making processes. In this 
condition, prediction modelling was prepared as part 
of the application of e-readiness in raw material 
management. The pattern of obtaining these materials 
was also used as the best test data, to assess the 
management model in smart inventory. 

  
LITERATURE REVIEW  
 
E-Readiness 

 
Technology Readiness Index (TRI) 1.0 is 

constructed based on four-dimensional aspects, 
namely Optimism, Innovation, Discomfort, and 
Insecurity [10], as shown in Fig. 1. This is often 
applied to a company with the Strategic Alignment 
Maturity Model (SAMM), to determine the 
utilization level of information systems in all business 
operations [11]. It is also one of the innovative 
references used in managing highly efficient logistics. 
In addition, TRI is related to the Global 
Competitiveness and Logistics Performance Indexes 
(GCI & LPI), as well as other similar supportive 
dimensions. 

Optimism Innovativeness

Discomfort Insecurity

Technology Readiness

 
Fig. 1 E-Readiness Technology 

 
In precast manufacturing companies, technology 

is also used in raw material management, by 
arranging and using a very suitable procedural 
schedule and method, respectively. Using linear 
programming methods, Markov models, and genetic 
algorithms, scheduling often emphasizes the 
management of time to handle and obtain raw 
materials [12]–[14]. In this condition, a good 
inventory receipt system is needed to provide more 
value during the prediction process, where efficient 
and periodical systematic performance is a function 
of operational activities. This helps to reduce time 
consumption in determining optimal operations in 
various parameters [15]. Additionally, process 
quality problems and production cost efficiency are 
adequately maintained [16]–[18]. 

 
Neural Network Utilization 

 
The amount of inventory is often related to the 

company's profit and the entire supply chain's 
survival. This indicates that prediction processes need 
to increase the company's ability to prevent risks, 
improve profits, and reduce losses during the 
acquisition of inventory, using the backpropagation 
neural network (BP) method [19]-[20]. Some reports 
were also observed based on the development of 
technology readiness, such as [21]-[22]. This 
emphasized determining the optimization value of 
material handling, using a neural network with 2 
algorithm methods, namely ALN and LVQ (Adaptive 
Linear Neuron and Linear Vector Quantization). 
These methods led to the prediction of cost-benefit 
into 3 categorical levels, namely high, medium, and 
low demand, as shown in Fig. 2.  
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Fig. 2 Neural Network Model based on E Readiness 
 

Adaline  
 

ADALINE (Adaptive Linear Neuron or later 
Adaptive Linear Element) is an early single-layer 
artificial neural network, which is implemented as an 
algorithm to predict outputs with an automatic 
controller. Although the accuracy obtained is not 
satisfactory, the value still changes and becomes 
highly precise during more data analyses [23]. In the 
following equation, an input vector (K) is observed 
with the pattern. 
 Xk=[x0, x1k, x2k, ..., xnk]T  (1)                               
Where Xk = the components of the weights and 
coefficients. Moreover, a weight vector (Wk) is 
observed in the Eq. (2) as follows, 
Wk = [wx0, w1k, w2k, ..., wnk]T                                    (2), 
where K

T
KK XWy   . 

Output 



k

W
k

X
n

k
yk

1
 

Adaptive learning rule  
Learning is also known as the Least Mean Square 
(LMS), whose rules in this process are observed as 
follows, 
W ← W + Ƞ(d – o)x            (3) 
 
Linear Vector Quantization (LVQ) Model 
 

This is one of the widely used ANN models 
(Artificial Neural Network), which emphasizes the 
prototype of a supervised learning classification 
algorithm and its network. These are trained through 
a competitive method similar to the Self-Organizing 
Map. The clustering technique is also used as a 
classifier to evaluate the deviations in the data sample 
through a random or specific density. This shows that 
performance remains the same with almost all 
combinations of training and testing [24]. Based on 
the following formula, learning is conducted by 
calculating the euclidian distance, 

),(min),( kk wxdwxd


                                  (4) 

Wk  (weight improvement) is also used to determine 
the weight (w) with the smallest distance value (d) as 
follows, 

  

).( kkk wxww


  , when cm =/≠ y, it is close 

to each other or part of the set, respectively. 
 

METHODOLOGY 
 

 
 

Fig. 3 Study Methodology 
 

The e-readiness technology emphasized the 
following factors, (1) security, (2) technical issues, 
(3) software reliability, (4) digital operations for 
internet usage, and (5) technical skill utilization [25]. 
The concept of this technical influence also originated 
from internal and external organizations, as shown in 
Fig. 3. 

 
 

Fig. 4 The concept of e-readiness influence 
 
Based on the external conditions, e-readiness 
emphasized many factors regarding the case 
perspective of each corporation in its respective 
business field. In this study, these factors were 
limited, including the IT technology infrastructure 
supporting the precast industry and the vendor market 
for raw materials. Meanwhile, the internal conditions 
of this technology focused on related technical 
improvements, using neural network methods for 
prediction processes.  
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Feature Extraction 

 
The internal data sources were the direct 

measurement of the goods’ receipts, regarding the 
yearly production of raw materials at precast 
organizations. In this condition, the raw material 
parameters included cement, sand, and gravel. In 
preparation for the precast products, a value 
extraction was also observed for the contributions of 
the materials and costs, as shown in Fig. 5. This 
showed that the cement and gravel costs and materials 
were the largest/lowest and smallest/highest 
contributions, respectively. 

Sand
70%

Split
0,04%

Cement
30%

MATERIAL CONTRIBUTION

Sand
39%

Split
0%

Cement
61%

COST PRECAST PRODUCTION  

( a ) ( b )

COST PRECAST PRODUCTION MATERIAL CONTRIBUTION

 
 

Fig. 5 Cost Contribution (a)  production (m3) and 
material contribution (b) precast product 

 
The second parameter focused on the monthly-

supply behaviour pattern of each raw material for a 
year, as shown in Fig. 6. 
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Fig. 6  Annual supply pattern of precast raw 
materials 

 
Data Test 

 
This emphasized the data of sand, gravel and 

cement, which were mixed based on the best quality 
standard of Indonesian concrete category K 500-K 
600. These data were obtained according to the order 
for 12 months, as shown in Table 1. 
 

Table 1 Precast raw material cost 
 

No Materials Cost IDR (m3) 
1 Sand 242,000 
2 Split 200,000 
3 Cement 715,000 

 
Normalized data 
 

The nominal unit of numeric data was normalized 
to facilitate data processing in the neural network 
architecture. This indicated that normalization was 
carried out by mapping into numbers between 0 and 
1, as shown in the following formula, 

minmax

min

XX

XX
X Original

Map 


                                      (4)                 

 Where :  
Xmap = Normalization Value 
X Original = Original Value 
X max = Maksimum Value 
X Min = Minimum Value 
 

In 2021, the normalization of input variables were 
also carried out on the price of raw materials, 
frequency of intermediaries, and volume of 
transaction costs. Moreover, the target data originated 
from the average total sales of precast products in the 
same year. 
 
Target data 
 

The target data contained three vectors, namely 
the minimum, maximum, and median sales values of 
the total cost, as shown in Fig. 7. 
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Fig.7 Total precast unit cost for the year. 
 
Based on Fig 7, the optimization patterns of the 

raw material supply and sales profits were observed 
when the production target need to achieve 45,000 
tons monthly with a minimum unit cost of IDR800 
million. 
 
DISCUSSION 

 
Based on the external conditions, the system input 

parameters included the readiness of IT technology 
infrastructure, which supported the precast industry 
and market vendors providing raw materials. In this 
analysis, the final output was a value within a 
specified range. Meanwhile, the internal input factors 
included the monthly frequency of raw material 
supplies in a year (Tons). Table 2 shows the input and 
target variables of this analysis. 
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Table 2 Input Parameter Identification and 

Prediction 

No 
Input 

Parameter 
Prediction Parameter  

Adaline  LVQ 
1. IT Readiness 

Infrastructure 

Monthly 
Precast 
Selling 
Patterns 

Decision 
Classification 

Level 

2. Level Market 
Vendor 

3. Cement 
Contributions 

(monthly) 
4. Split 

Contributions 
(monthly) 

5. Sand 
Contributions 

(monthly) 
 

Architecture Neural Network Adaline  

 
 

Fig. 8 Adaline Architecture 
 

Based on Fig. 8, five defined input values were 
observed, indicating a linear activation function 
between 0 and 1.  
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Fig. 9 Linear Vector Quantization Architecture 
 

In Fig. 9. five defined input values were also 
observed, where a linear classification produced 3 
cluster categories.  
 
Simulation Result 
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Fig. 10 Adaline Method simulation results 

 
According to Fig. 10, the pattern of obtaining raw 

materials for precast products fluctuated based on the 
test data from 2020, through the Adaline method 
learning for a year. In this condition, the lowest orders 
were in the 3rd, 8th, 11th, and 12th months when 5 
parameters were inputted into this method. 
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Fig. 11 LVQ Method Simulation Result 
 

Based on Fig. 11, the pattern of obtaining raw 
materials for precast products also fluctuated 
regarding the test data from 2020, through the LVQ 
method learning for a year. This proved that the 
highest classes and the best values occurred in the 1st, 
6th, and 9th months when 5 parameters were inputted 
into this method, with the lowest orders observed on 
the 2nd, 3rd, 4th, 7th, 8th, 10th, 11th, and 12th period. 
In the 5th month, the values obtained were also found 
not to be very high or low. These actions emphasized 
the option of maintaining existing raw materials or 
placing orders regarding the increment of the 
previous month. 

 
Table 3. Class and Cost Relation 

 
No. Month Classes Cost (IDR) 
1 Jan 3  3,644,810 
2 Feb 1 1,829,060 
3 Mar 1 804,661  
4 Apr 1  1,724,870  
5 May 2  2,097,578  
6 Jun 3  2,872,875  
7 Jul 1  2,370,019  
8 Aug 1  1,170,018  
9 Sep 3  2,464,231  
10 Oct 1  2,010,972  
11 Nov 1  895,467  
12 Dec 1  942,555  

 
According to Table 3, the second and third 

months had different advantages, although they were 
in class (1). This was in line with the eighth and 
eleventh months. The midpoint was also observed in 
class (2), which occurred in the 5th month. However, 
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the 1st, 6th, and 9th months exhibited quite a large 
amount of transactions, leading to the significant 
effects on the order of raw materials and logistics 
financing considerations. 

 
CONCLUSIONS 
 

Based on these results, cost optimization was 
conducted by accepting and creating new orders when 
the conditions were found in class (2). This action 
was often carried out by observing the trend of the 
previous month. Due to the high-order rate, the 
classes also showed that the level of operations need 
be accelerated and periodically limited when the 
conditions were categorized in class (3). For class (2), 
the order for raw materials was only performed by 
observing the Adaline method simulation, since a 
tendency was found for the market to absorb precast 
products in the following month. Furthermore, the 
application of the neural network method was 
appropriately implemented when supported by 
external e-readiness factors, including the which 
include infrastructure preparedness and many 
material vendor options. The implementation of this 
conceptual technology also used 2 neural network 
models for precast products. This involved the 
processing and production of similar input values and 
different decision model simulation, respectively. 
Irrespective of these differences, a strong correlation 
was still observed with the time efficiency of the 
decision-making process. Therefore, bother LVQ and 
Adaline contributed 50% to this decision approach.  
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RAW MATERIAL OPTIMIZATION WITH NEURAL NETWORK 
METHOD IN CONCRETE PRODUCTION  

ON PRECAST INDUSTRY  
 

Ranti Hidayawanti1, Yusuf Latief2 
1,2Faculty of Engineering, University of Indonesia, Indonesia 

 
ABSTRACT 

 
The development of construction is presently experiencing rapid growth in Indonesia, leading to the 

requirement of the right materials for infrastructural enhancements, such as roads, bridges, high-rise residential 
buildings, and housing. From the existing infrastructure, concrete innovations such as precasts are needed with 
good quality materials, for the quick completion of constructions. This is because the need for good quality and 
smooth material helps to determine the success of a building project, with the use of technology through precast 
being a problem-solving process. Therefore, this study aims to analyze the patterns by which inventory 
procurement predictions produce precasts with good quality, using the e readiness framework concept of the neural 
network through appropriate decision-making processes. It also focuses on innovating technological products used 
in the Indonesian precast industry. The Neural Network was used to produce the best target quality time and precast 
commodities. The result indicated two outputs from 2 neural network models, using five similar input-value 
variables. Based on the Adaline neural network, the outputs were observed as the highest sales-cost predictions 
for precast products, which often occurred in 1, 5, 6 and 9 months. Besides this, production activities were also 
normally operated at level (1), with profit optimization being highly considered before months 1, 5, 6 and 9. For 
the LVQ neural network, the result was a predictive classification of class intensity levels, where fast decision-
making processes occurred in months 1, 6 and 9. Cost optimization was also carried out by ordering raw materials 
several months in advance, considering the trend in material prices and logistics. 
 
Keywords: Raw Material, Neural Network, Concrete, Precast. 
 
INTRODUCTION 

 
The Indonesian government has been undergoing 

massive infrastructural development since 2019, with 
an effect observed in the significant increase in 
precast products' demand in 2022. Based on these 
data, precast production was carried out by 76 
registered factories, which were distributed 
throughout the country. Each factory had an increase 
in production, which varied between 210,000-
500,000 tons yearly, to serve the increasing demand. 
This indicated that the average monthly production of 
each organization needs to reach 45,000 tons.  

In Indonesia, efficiency is often measured from a 
cost and time perspective, showing that the use of 
precast concrete is more efficient than conventional 
methods [1]. Although this utilization is more 
efficient, technology-based precast supply chain 
parameters still need to become effective support. 
This supply chain is classified into various phases, 
namely planning, designing, manufacturing, 
transportation, installation, and construction. To 
achieve an integrated construction, the parties in these 
phases need to have efficient communication and 
effective collaboration in providing accurate and up-
to-date information. According to the governmental 
data, the main problems in the precast supply chain 
phases began from the following, (1) poor planning, 
(2) ineffective communication between designers and 
manufacturers, (3) incompetent employees/workers, 

(4) damage to raw materials, and (5) large sizes and 
heavy precast components and coordination in the 
bad project site. Besides these conditions, the key 
issues also contributed to negative consequences on 
the efficiency, productivity and effectiveness of 
precast delivery [2]. After procurement, the damages 
to raw materials are often found to affect the quality 
of the process and precast production during the 
inventory phase (initial stage). This explains that the 
procurement division needs to be able to provide the 
certainty of scheduling receipts for efficient project 
completion when ordering raw materials. Ordering of 
raw materials is carried out by considering the best 
price pattern for each item including cement, gravel 
and sand from several different vendors. Time 
Prediction of determining the peak sales pattern of 
precast products is carried out to find margins based 
on the difference in price patterns which will affect 
management's decision to choose the right vendor 
partner at the right time. Irrespective of these 
conditions, practical raw material orders and 
assembly time have still not been highly considered, 
leading to the probable effects and implications of 
excess inventory occurrences and additional project-
financing increment, respectively. Therefore, a 
methodology should be determined for the effective, 
efficient, and economical control of precast plants’ 
inventory management [3]. 

The utilization of technology has reportedly been 
implemented widely, to support the management of 
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raw materials during the inventory processes. This 
was in line with the raw material control for precast 
tunnelling projects in China [4], where many 
businesses were leveraging historical sales and 
demand data to implement intelligent inventory 
management systems. Demand forecasting involves 
predicting/ensuring the consumption/collection of 
precast raw materials. This plays an important role in 
the area of inventory control and supply chain, due to 
enabling production and distribution planning. It is 
also conditioned to reduce raw material delivery 
times and optimize decisions on the supply chain [5]. 
This is to help the developers and operators of 
inventory management systems in improving 
efficiency, maximizing productivity, and minimizing 
material losses [6]. 

Many studies have also evaluated smart 
inventory implementation, namely the dynamic 
brick-and-mortar supply chain analysis. This 
evaluated the benefits of implementing smart 
applications and systems to improve Vendor 
Managed Inventory (VMI) efficiency. In the supply 
chain mechanism, the manufacturer configured the 
production level and replenished the inventory at the 
retailer's store, where prices were set up to affect sales 
and inventory. In this condition, the company also 
shared the revenue and inventory costs through an 
agreement. This condition was very dynamic when 
inventory increased and decreased at production and 
sales levels respectively, with periodical variations 
observed according to several stochastic errors [7]. In 
this case, the need for accurate predictions led to a 
more effective and cheap supply chain, as well as 
allowed companies to provide quality, quantity, 
periodical, and low-production cost products [8]. 
Many studies also used other machine learning 
approaches to map prediction patterns, such as fuzzy 
subtractive clustering [9].Therefore, this study aims 
to analyze the patterns by which inventory 
procurement predictions produce precast products 
with good quality, using the e-readiness framework 
concept of the neural network method through 
appropriate decision-making processes. In this 
condition, prediction modelling was prepared as part 
of the application of e-readiness in raw material 
management. The pattern of obtaining these materials 
was also used as the best test data, to assess the 
management model in smart inventory. 

  
LITERATURE REVIEW  
 
E-Readiness 

 
Technology Readiness Index (TRI) 1.0 is 

constructed based on four-dimensional aspects, 
namely Optimism, Innovation, Discomfort, and 
Insecurity [10], as shown in Fig. 1. This is often 
applied to a company with the Strategic Alignment 
Maturity Model (SAMM), to determine the 

utilization level of information systems in all business 
operations [11]. It is also one of the innovative 
references used in managing highly efficient logistics. 
In addition, TRI is related to the Global 
Competitiveness and Logistics Performance Indexes 
(GCI & LPI), as well as other similar supportive 
dimensions. 

Optimism Innovativeness

Discomfort Insecurity

Technology Readiness

 
Fig. 1 E-Readiness Technology 

 
In precast manufacturing companies, technology 

is also used in raw material management, by 
arranging and using a very suitable procedural 
schedule and method, respectively. Using linear 
programming methods, Markov models, and genetic 
algorithms, scheduling often emphasizes the 
management of time to handle and obtain raw 
materials [12]–[14]. In this condition, a good 
inventory receipt system is needed to provide more 
value during the prediction process, where efficient 
and periodical systematic performance is a function 
of operational activities. This helps to reduce time 
consumption in determining optimal operations in 
various parameters [15]. Additionally, process 
quality problems and production cost efficiency are 
adequately maintained [16]–[18]. 

 
Neural Network Utilization 

 
The amount of inventory is often related to the 

company's profit and the entire supply chain's 
survival. This indicates that prediction processes need 
to increase the company's ability to prevent risks, 
improve profits, and reduce losses during the 
acquisition of inventory, using the backpropagation 
neural network (BP) method [19]-[20]. Some reports 
were also observed based on the development of 
technology readiness, such as [21]-[22]. This 
emphasized determining the optimization value of 
material handling, using a neural network with 2 
algorithm methods, namely ALN and LVQ (Adaptive 
Linear Neuron and Linear Vector Quantization). 
These methods led to the prediction of cost-benefit 
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into 3 categorical levels, namely high, medium, and 
low demand, as shown in Fig. 2.  

Linear Vector 
Quantization (LVQ) 

Model

Adaptive Linear (Adaline) 
Model

In
pu

t

Class 

Cost

 
 

Fig. 2 Neural Network Model based on E Readiness 
 

Adaline  
 

ADALINE (Adaptive Linear Neuron or later 
Adaptive Linear Element) is an early single-layer 
artificial neural network, which is implemented as an 
algorithm to predict outputs with an automatic 
controller. Although the accuracy obtained is not 
satisfactory, the value still changes and becomes 
highly precise during more data analyses [23]. In the 
following equation, an input vector (K) is observed 
with the pattern. 
 Xk=[x0, x1k, x2k, ..., xnk]T  (1)                               
Where Xk = the components of the weights and 
coefficients. Moreover, a weight vector (Wk) is 
observed in the Eq. (2) as follows, 
Wk = [wx0, w1k, w2k, ..., wnk]T                                    (2), 
where K

T
KK XWy   . 

Output 



k

W
k

X
n

k
yk

1
 

Adaptive learning rule  
Learning is also known as the Least Mean Square 
(LMS), whose rules in this process are observed as 
follows, 
W ← W + Ƞ(d – o)x            (3) 
 
Linear Vector Quantization (LVQ) Model 
 

This is one of the widely used ANN models 
(Artificial Neural Network), which emphasizes the 
prototype of a supervised learning classification 
algorithm and its network. These are trained through 
a competitive method similar to the Self-Organizing 
Map. The clustering technique is also used as a 
classifier to evaluate the deviations in the data sample 
through a random or specific density. This shows that 
performance remains the same with almost all 
combinations of training and testing [24]. Based on 
the following formula, learning is conducted by 
calculating the euclidian distance, 

),(min),( kk wxdwxd


                                  (4) 

Wk  (weight improvement) is also used to determine 
the weight (w) with the smallest distance value (d) as 
follows, 
  

).( kkk wxww


  , when cm =/≠ y, it is close 

to each other or part of the set, respectively. 
 

METHODOLOGY 
 

 
 

Fig. 3 Study Methodology 
 

The e-readiness technology emphasized the 
following factors, (1) security, (2) technical issues, 
(3) software reliability, (4) digital operations for 
internet usage, and (5) technical skill utilization [25]. 
The concept of this technical influence also originated 
from internal and external organizations, as shown in 
Fig. 3. 

Relative Advantage Market Foces E readiness

E readiness ExternalE readiness Internal

Top Management Beliefs

Technology Resources
Supporting Industri E 

Readiness

E Business 
Adoption

Control Variable
- Size
- Age

- Ownership
- Industry Type

 
 

Fig. 4 The concept of e-readiness influence 
 
Based on the external conditions, e-readiness 
emphasized many factors regarding the case 
perspective of each corporation in its respective 
business field. In this study, these factors were 
limited, including the IT technology infrastructure 
supporting the precast industry and the vendor market 
for raw materials. Meanwhile, the internal conditions 
of this technology focused on related technical 
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improvements, using neural network methods for 
prediction processes.  

 

Feature Extraction 

 
The internal data sources were the direct 

measurement of the goods’ receipts, regarding the 
yearly production of raw materials at precast 
organizations. In this condition, the raw material 
parameters included cement, sand, and gravel. In 
preparation for the precast products, a value 
extraction was also observed for the contributions of 
the materials and costs, as shown in Fig. 5. This 
showed that the cement and gravel costs and materials 
were the largest/lowest and smallest/highest 
contributions, respectively. 

 

Sand
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COST PRECAST PRODUCTION  

Sand
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Fig. 5 Cost Contribution (a)  production (m3) and 
material contribution (b) precast product 

 
The second parameter focused on the monthly-

supply behaviour pattern of each raw material for a 
year, as shown in Fig. 6. 
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Fig. 6  Annual supply pattern of precast raw 
materials 

 
Data Test 

 
This emphasized the data of sand, gravel and 

cement, which were mixed based on the best quality 
standard of Indonesian concrete category K 500-K 
600. These data were obtained according to the order 
for 12 months, as shown in Table 1. 
 

Table 1 Precast raw material cost 
 

No Materials Cost IDR (m3) 
1 Sand 242,000 
2 Split 200,000 
3 Cement 715,000 

 
Normalized data 
 

The nominal unit of numeric data was normalized 
to facilitate data processing in the neural network 
architecture. This indicated that normalization was 
carried out by mapping into numbers between 0 and 
1, as shown in the following formula, 

minmax

min

XX

XX
X Original

Map 


                                      (4)                 

 Where :  
Xmap = Normalization Value 
X Original = Original Value 
X max = Maksimum Value 
X Min = Minimum Value 
 

In 2021, the normalization of input variables were 
also carried out on the price of raw materials, 
frequency of intermediaries, and volume of 
transaction costs. Moreover, the target data originated 
from the average total sales of precast products in the 
same year. 
 
Target data 
 

The target data contained three vectors, namely 
the minimum, maximum, and median sales values of 
the total cost, as shown in Fig. 7. 

0

500000000

1000000000

1500000000

2000000000

2500000000

3000000000

3500000000

4000000000

1 2 3 4 5 6 7 8 9 10 11 12 13

Selling Precast Pattern

Month

I 
D

 R

4.000.000.000

3.500.000.000

3.000.000.000

2.500.000.000

2.000.000.000

1.500.000.000

1.000.000.000

500.000.000

 
Fig.7 Total precast unit cost for the year. 
 
Based on Fig 7, the optimization patterns of the 

raw material supply and sales profits were observed 
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when the production target need to achieve 45,000 
tons monthly with a minimum unit cost of IDR800 
million. 
 
DISCUSSION 

 
Based on the external conditions, the system input 

parameters included the readiness of IT technology 
infrastructure, which supported the precast industry 
and market vendors providing raw materials. In this 
analysis, the final output was a value within a 
specified range. Meanwhile, the internal input factors 
included the monthly frequency of raw material 
supplies in a year (Tons). Table 2 shows the input and 
target variables of this analysis. 

 
Table 2 Input Parameter Identification and 

Prediction 

No 
Input 

Parameter 
Prediction Parameter  

Adaline  LVQ 
1. IT Readiness 

Infrastructure 

Monthly 
Precast 
Selling 
Patterns 

Decision 
Classification 

Level 

2. Level Market 
Vendor 

3. Cement 
Contributions 

(monthly) 
4. Split 

Contributions 
(monthly) 

5. Sand 
Contributions 

(monthly) 
 

Architecture Neural Network Adaline  

 
 

Fig. 8 Adaline Architecture 
 

Based on Fig. 8, five defined input values were 
observed, indicating a linear activation function 
between 0 and 1.  
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Fig. 9 Linear Vector Quantization Architecture 
 

In Fig. 9. five defined input values were also 
observed, where a linear classification produced 3 
cluster categories.  
 
Simulation Result 
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Fig. 10 Adaline Method simulation results 

 
According to Fig. 10, the pattern of obtaining raw 

materials for precast products fluctuated based on the 
test data from 2020, through the Adaline method 
learning for a year. In this condition, the lowest orders 
were in the 3rd, 8th, 11th, and 12th months when 5 
parameters were inputted into this method. 
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Fig. 11 LVQ Method Simulation Result 
 

Based on Fig. 11, the pattern of obtaining raw 
materials for precast products also fluctuated 
regarding the test data from 2020, through the LVQ 
method learning for a year. This proved that the 
highest classes and the best values occurred in the 1st, 
6th, and 9th months when 5 parameters were inputted 
into this method, with the lowest orders observed on 
the 2nd, 3rd, 4th, 7th, 8th, 10th, 11th, and 12th period. 
In the 5th month, the values obtained were also found 
not to be very high or low. These actions emphasized 
the option of maintaining existing raw materials or 
placing orders regarding the increment of the 
previous month. 

 
Table 3. Class and Cost Relation 

 
No. Month Classes Cost (IDR) 
1 Jan 3  3,644,810 
2 Feb 1 1,829,060 
3 Mar 1 804,661  
4 Apr 1  1,724,870  
5 May 2  2,097,578  
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6 Jun 3  2,872,875  
7 Jul 1  2,370,019  
8 Aug 1  1,170,018  
9 Sep 3  2,464,231  
10 Oct 1  2,010,972  
11 Nov 1  895,467  
12 Dec 1  942,555  

 
According to Table 3, the second and third 

months had different advantages, although they were 
in class (1). This was in line with the eighth and 
eleventh months. The midpoint was also observed in 
class (2), which occurred in the 5th month. However, 
the 1st, 6th, and 9th months exhibited quite a large 
amount of transactions, leading to the significant 
effects on the order of raw materials and logistics 
financing considerations. 

 
CONCLUSIONS 
 

Based on these results, cost optimization was 
conducted by accepting and creating new orders when 
the conditions were found in class (2). This action 
was often carried out by observing the trend of the 
previous month. Due to the high-order rate, the 
classes also showed that the level of operations need 
be accelerated and periodically limited when the 
conditions were categorized in class (3). For class (2), 
the order for raw materials was only performed by 
observing the Adaline method simulation, since a 
tendency was found for the market to absorb precast 
products in the following month. Furthermore, the 
application of the neural network method was 
appropriately implemented when supported by 
external e-readiness factors, including the which 
include infrastructure preparedness and many 
material vendor options. The implementation of this 
conceptual technology also used 2 neural network 
models for precast products. This involved the 
processing and production of similar input values and 
different decision model simulation, respectively. 
Irrespective of these differences, a strong correlation 
was still observed with the time efficiency of the 
decision-making process. Therefore, bother LVQ and 
Adaline contributed 50% to this decision approach.  
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Yasuhide Mochida and Tatsuki Maniwa 
 
g12201 NUMERICAL SIMULATION FOR SEDIMENTATION OF SAND PARTICLES IN EXCAVATION 
STABILIZERS 
Hiroya Asano, Koki Nakao, Tomotaka Morishita, Toshihiko Miura, Yasuharu Wachi, Kazuhiro 
Watanabe and Shinya Inazumi 
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14:30-15:30  

 

14:30-15:30 Oral/Poster Session 8 (ROOM C) Wednesday, 23 November 2022 
Chair: Prof. Takaaki Wajima 
g12104, g12109, g12116, g12120, g12231, g12286 
 
g12104 MATERIAL SOURCE OF MUARAJAMBI TEMPLES, INDONESIA 
Sondang Martini Siregar, Edy Sutriyono, Ari Siswanto and Agus Aris Munandar 
 
g12109 DESALINATION BEHAVIORS FROM SEAWATER USING NATURAL ZEOLITE AND CALCINED CA-
FE LAYERED DOUBLE HYDROXIDE FOR CULTIVATION 
Takaaki Wajima and Fumika Sekihata 
 
g12116 MEASUREMENT OF CRACK DISPLACEMENT USING DIGITAL PHOTOGRAMMETRY 
Afia S. Boney, Satoshi Nishiyama and Teruyuki Kikuchi 
 
g12120 STABILITY OF THE MUNICIPAL SOLID WASTE LANDFILL ON SLOPING LAND IN BATU CITY, 
EAST JAVA, INDONESIA 
A Rachmansyah, A P Putra, A Darmawan and Harimurti 
 
g12231 WASTE TO PRODUCT: POTENTIAL OF MG-RICH GYPSUM ADDITIVE FOR IMPROVEMENT OF 
PEAT SOIL 
Ayah Almsedeen, Nurmunira Muhammad and Mohd Fakhrurrazi Ishak 
 
g12286 URBAN HEAT SIGNATURE AS MONITORING OF ENVIRONMENTAL HEALTH 
Adi Wibowo, Iqbal Putut Ash Sidiq, Mariney Binti Mohd Yusoff and Tengku Adeline Adura Binti 
Tengku Hamzah 
 

15:30-16:00 Journal Publication Guidance (ROOM B) 

16:00-16:30 Afternoon Refreshments, Group Photo 

18:30-20:30 Banquet & Awards Ceremony 

20:30 Adjournment for the Day 

  

Day 3 (Onsite & ZOOM): Thursday, 24 November 2022 
All online & onsite meeting times are in Thailand time  

08:30-17:00 Registration (ROOM A) 
 

 

 

 

 

09:30-10:30 

 

 

 

 

09:30-10:30 Oral/Poster Session 9 (ROOM B): Thursday, 24 November 2022 
Chair: Prof. Ryan Ramirez 
g12205, g12208, g12209, g12225, g12211, g12212 
 
g12205 STRENGTH PROPERTES OF BENTONITE SUBJECTED TO CYCLIC LOADING STRESS 
Tomoyoshi Nishimura, Seiichi Narushima, Yasunori Arai and Yuki Sakoda 
 
g12208 PROPERTIES AND PERFORMANCES OF SOIL CEMENT MODIFIED WITH CONCENTRATED 
PARA-RUBBER 
Supathinee Kowsura, Susit Chaiprakaikeow, Apiniti Jotisankasa, Suphawut Malaikrisanachalee, 
Supakij Nontananandh, Korakod Nusit, Auckpath Sawangsuriya and Shinya Inazumi 
 
g12209 NUMERICAL STUDY OF A HYBRID COUNTERMEASURE FOR RIVER EMBANKMENT IN ACTUAL 
FIELD CASE 
Kakuta Fujiwara and Enayat Mallyar 
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09:30-10:30 

 

g12225 FLASH CALCINATED SEDIMENT USED IN THE CEM III CEMENT PRODUCTION AND THE 
POTENTIAL PRODUCTION OF HYDRAULIC BINDER FOR THE ROAD CONSTRUCTION – PART I: 
CHARACTERIZATION OF CEM III CEMENTS 
Mahfoud Benzerzour, Duc Chinh Chu, Joelle Kleib, Mouhamadou Amar, Nor-Edine Abriak and 
Jaouad Nadah 
 
g12211 FAILURE INITIATION AND MODES OF HOEK-BROWN ROCK MASSES SURROUNDING 
UNDERGROUND STORAGE WITH HIGH INTERNAL PRESSURE 
Apiwish Thongraksa and Pornkasem Jongpradist  
 
g12212 EVALATION OF DISPLACEMENT AT GROUND SURFACE DURING GROUNDWATER RECOVERY 
Sutasinee Intui, Jittiphan Jindawutthiphan, Apinya Rungrueang, Choknimit Leelananthawong, 
Thanapatsa Srisarn Trpkovski, Kearkkeart Apischotecawankit and Shinya Inazumi  
 
09:30-10:30 Oral/Poster Session 10 (ROOM C): Thursday, 24 November 2022 
Chair: Dr. Ahmad Sana 
g12137, g12139, g12143, g12152, g12153, g12155 
 
g12137 A NOVEL ROUGH FUZZY BASED DELPHI METHOD FOR HIGHWAY PROJECTS RISK ANALYSIS: 
THE SOE ASSIGNMENT SCHEME CASE STUDY 
Gilang Ardi Pratama, Yusuf Latief and Lukas Beladi Sihombing 
 
g12139 RESULTS OF RECOVERY PROJECT ON WETLANDS WITH LOST BIODIVERSITY 
Michiko Masuda, Koichi Nagarekawa and Fumitake Nishimura 
  
g12143 PREPARATION OF GEOPOLYMER CEMENT FROM LUNAR ROCK SAND USING ALKALI FUSION, 
AND ITS EVALUATION OF RADIATION SHIELDING ABILITY 
Osamu Toda and Takaaki Wajima 
  
g12152 PROPOSAL OF A FLOATING OFFSHORE BASE FOR DISASTER PREVENTION AND 
MULTIPURPOSE USE 
Shinji Sato and Kai Nagatomi 
 
g12153 STUDY ON THE ALLEY IN THE CITY BASED ON PEDESTRIAN’S IMAGE 
Shonosuke Kajita and Kazunari Tanaka 
 
g12155 A STUDY ON THE RELATIONSHIP BETWEEN VISUAL STIMULI AND THERMAL SENSATION IN A 
TROPICAL REGION – TARGETING SHORT TERM RESIDENTS – 
Kenta Fukagawa, Yoshihito Kurazumi, Ariya Aruninta and Yoshiaki Yamato 
 

10:30-11:00 Morning Refreshments 
 

 

 

 

11:00-12:00 

 

 

 

 

11:00-12:00 Oral/Poster Session 11 (ROOM B): Thursday, 24 November 2022 
Chair: Prof. Ramanathan Ayothiraman 
g12215, g12303, g12217, g12218, g12219, g12220 
 
g12215 A BASIC STUDY ON ESTIMATING PARTICLE-SIZE DISTRIBUTION BY AUGER EXCAVATION 
SOUND USING MACHINE LEARNING 
Keito Endo, Taizo Kobayashi and Ryoichi Fukagawa 
 
g12303 A CORRELATION BETWEEN ONE-DIMENSIONAL CONSOLIDATION COEFFICIENTS WITH 
BASALT FIBER LENGTH, RHA CONTENT AND CEMENT IN FIBER-REINFORCED STABILIZED EXPANSIVE 
SOILS 
Alex Otieno Owino and Zakaria Hossain 
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g12217 MODEL TESTS ON CONCRETE BLOCKS SINKING INTO SEABED GROUND WITH UPWARD 
SEEPAGE FLOW GENERATED 
Tatsuya Matsuda, Kinya Miura, Naoto Naito and Yuki Ando 
 
g12218 MODEL TESTS ON SAND BOILING AROUND SHEET PILE REGARDING PROPERIES OF GROUND 
MATERIAL 
Tatsuya Matsuda, Naoto Naito and Kinya Miura 
 
g12219 DISCRETE ELEMENT MODELING OF SLOPE FLOW BEHAVIORS OF DRY GRANULAR MATERIALS 
WITH DIFFERENT COLLAPSE CONDITIONS 
Naoto Naito, Tatsuya Matsuda, Kinya Miura, Yasuhiro Yamada and Takumu Omura 
 
g12220 MODEL ROCK-SLOPE FAILURE TESTS ON FINAL RUNOUT DISTANCE OF DRY GRANULAR 
AVALANCHE WITH SECONDARY SLOPE FAILURE 
Naoto Naito, Tatsuya Matsuda, Kinya Miura, Takumu Omura and Arif Daniel Bin Azmi  
 
11:00-12:00 Oral/Poster Session 12 (ROOM C) Thursday, 24 November 2022 
Chair: Dr. Beti Nurbaiti 
g12165, g12167, g12168, g12172, g12175, g12176 
 
g12165 THE RECYCLING BIOCHAR BASED-MUSHROOM GROWING MEDIA FOR SOIL ENRICHMENT IN 
CORN CULTIVATION  
Ambar Pertiwiningrum, Margaretha Arnita Wuri, Alva Edy Tontowi and Andang Widi Harto 
 
g12167 STRATEGIES FOR INCREASING ACCESS TO WATER AND SANITATION IN A WATER-SENSITIVE 
AREA 
Shella Zahrawani, Ahmad Soleh Setiyawan, Prasanti Widyasih Sarli, Prayatni Soewondo and Dion 
Awfa 
 
g12168 DETERMINATION FACTORS FOR SELLING LOCATIONS, GENDER, AND MIGRATION STATUS OF 
STREET VENDORS IN EAST JAKARTA IN ACHIEVING ECONOMIC RESILIENCE DURING THE COVID-19 
PANDEMIC  
Beti Nurbaiti, Chotib, Kemas Ridwan K, Mia Siscawati and Elisabeth Ratu Rante Allo 
 
g12172 ON MOVEMENT OF PEDESTRIANS IN THE STATION SQUARE 
Haru Kanda and Kazunari Tanaka 
 
g12175 ROAD TRAFFIC EVALUATION FORCUSHING ON VELOCITY AND FORM 
Shion Muramoto and Kazunari Tanaka 
 
g12176 METHOD FOR EVALUATING URBAN COMFORT SPACES FOCUSING ON ENVIRONMENTAL 
SOUND USING EEG 
Shotaro Otsuji and Kazunari Tanaka 
 

12:00-13:00 Lunch 
 

 

13:00-14:00  

 

 

13:00-14:00 Oral/Poster Session 13 (ROOM B) Thursday, 24 November 2022 
Chair: Prof. Salem Alsanusi 
g12224, g12236, g12237, g12252, g12260, g12261 
 
g12224 INFLUENCE OF TEMPERATURE ON ELASTIC STIFFNESS AND TIME-DEPENDENT 
DEFORMATION BEHAVIOURS OF HOSTUN SAND IN TRIAXIAL COMPRESSION TEST 
Kosit Jariyatatsakorn and Warat Kongkitkul 
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g12236 NUMERICAL ANALYSIS FOR VERTICAL RESPONSE OF SHALLOW SUCTION PILE 
Donghyun Lee, Jaewoo Jung, Yoowon Lee, Jaehun Ahn and Jongwon Jung 
 
g12237 MODELLING LIGHTWEIGHT DEFLECTOMETER BASED ON ANALYTICAL AND NUMERICAL 
MODELS 
Tram Huyen Nguyen, Yunje Lee, Hoa Phuong Thi Nguyen, Sangwook Kang and Jaehun Ahn 
 
g12252 FEASIBILITY STUDY ON SOIL CLASSIFICATION FROM SOIL IMAGES USING DEEP LEARNING 
Tomoki Abe and Taizo Kobayashi 
 
g12260 A COMPARISON BETWEEN PAVEMENT RESPONSES FROM THE FALLING WEIGHT 
DEFLECTOMETER AND THOSE FROM TRUCK LOADING BASED ON THE LAYERED ELASTIC ANALYSIS 
Thinn Thinn and Auckpath Sawangsuriya 
 
g12261 PERFORMANCE OF BEARING LAYER CONSTRUCTED USING LIGHTLY CEMENTED CLAY 
Juan Wei Koh, Soon Hoe Chew, Yeow Chong Tan, Cheng Soon Teo, Shanyin Kee and Danette S.E. Tan 
 
13:00-14:00 Oral/Poster Session 14 (ROOM C) Thursday, 24 November 2022 
Chair: Dr. Achmad Wicaksono 
g12180, g12185, g12186, g12193, g12194, g12196 
 
g12180 APPLICATION OF THREE-DIMENSIONAL POINT CLOUDS FOR RIVER MANAGEMENT USING 
DRONE SURVEYING 
Nanoka Akiyama and Satoshi Nishiyama 
 
g12185 ASSESSMENT OF DOMESTIC WASTEWATER MANAGEMENT PROGRAMS IN RIVERBANK 
SETTLEMENTS 
Moch Zaelani Pebriansyah, Ahmad Soleh Setiyawan, Dyah Wulandari Putri and Ken Aryu Ruska 
Yuniar 
 
g12186 THE IMPACT OF COVID 19 ON CHANGE OF MONTHLY INCOME IN INDONESIA 
Aditya Maulana Mugiraharjo and Chotib 
  
g12193 MULTIMODAL GOODS TRANSPORTATION POLICY MODEL: TRANSPORTATION POLICY 
ENHANCEMENT IN NORTH COAST LINE OF JAVA 
Zony Yulfadli, Achmad Wicaksono, Ludfi Djakfar, Muhammad Zainul Arifin and Moch. Abdillah Nafis 
 
 
g12194 SMART, INTEGRATED SUSTAINABLE AND ENVIRONMENT FRIENDLY TRANSPORTATION 
INFRASTRUCTURE CONNECTIVITY TO THE CAPITAL CITY OF NUSANTARA 
Achmad Wicaksono, Rosa Agustaniah and Ludfi Djakfar  
 
g12196 EVALUATING IMPACTS OF OVER-DIMENSION AND OVERLOADING TRUCKS (CASE STUDY IN 
ARTERIAL ROADS) 
Achmad Wicaksono and Meriana Wahyu Nugroho 

 

 

14:00-15:50  

 

 

 

14:00-15:50 Oral/Poster Session 15 (ROOM B) Thursday, 24 November 2022 
Chair: Prof. Visa Maria 
g12264, g12131, g12269, g12243, g12277, g12279, g12280, g12284, g12288, g12311, g12312 
 
g12264 CORROSION OF UNDERGROUND STEEL BETWEEN SOIL AND CLAY AND ITS PREVENTION 
Keiyu Kawaai and Takahiro Nishida 
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g12131 TiO2 PHOTOCATALYST SUPPORTED ON FLY ASH PARTICLES USED IN WASTEWATER 
TREATMENT LOADED WITH FOOD DYES 
M. Visa and I. Visa 
 
g12269 PILE INSTALLATION EFFECTS ON THE STRESS AND DEFORMATION STATE OF SURROUNDING 
SOIL: REVIEW 
Worku Firomsa Kabeta 
 
g12243 SIMULATION OF SMOKE DISPERSION AND TEMPERATURE DISTRIBUTION ON KEBON MELATI 
SUB-DISTRICT FIRE USING COMPUTATIONAL FLUID DYNAMICS 
Deffi Ayu Puspito Sari, Agnes Setioningrum and Dani Harmanto 
 
g12277 GEOMETRIC SHAPE FOR IRRIGATION SEDIMENT TRAPS VORTEX DESILTING BASIN 
Muhammad Isnaeni, Muhammad Syahril Badri Kusuma, Joko Nugroho, Mohammad Farid and             
Muhammad Cahyono 
 
g12279 PROFILING EXHALED VOLATILE ORGANIC COMPOUNDS FROM SEMERU ERUPTION 
REFUGEES BY USING E-NOSE 
Arinto Yudi Ponco Wardoyo, Eko Teguh Purwito Adi, Hari Arief Dharmawan, Susanthy Djajalaksana, 
Arif Budianto, Ngakan Putu Putra, Aditya Sri Listyoko, Fitri Indah Sari and Raden Dicky 
 
g12280 EFFECT OF DIATOMACEOUS EARTH ON DESICCATION CRACKING OF EXPANSIVE SOILS 
Alemshet B. Tadesse, Y. Fukubayshi, A. Koyama and D. Suetsugu 
 
g12284 URBAN HEAT HAZARD MODEL BASED ON LOCAL CLIMATE ZONE 
Adi Wibowo, Nadira Retno Abisha, Eko Kusratmoko and Ratna Saraswati 
 
g12288 STUDY ON THE TEMPERATURE MITIGATION EFFECT BY A CULTURAL HERITAGE IN JAPAN -
TARGETING A SHRINE LOCATED NEAR THE CENTER OF FUKUOKA CITY 
Kenta Fukagawa, Yoshihito Kurazumi, Ariya Aruninta and Yoshiaki Yamato 
 
g12311 MICROSCOPIC INVESTIGATION ON ATMOSPHERIC PARTICLES IN CHELYABINSK, SOUTH URAL 
REGION, RUSSIA 
Olga V. Rakova, Tatyana G. Krupnova, Kirill A. Bondarenko, Svetlana V. Gavrilkina and Valerii N. 
Udachin  
 
g12312 CAN TREES HELP REDUCE LEAD IN URBAN AIR? А CASE STUDY OF GREENING IN A RUSSIAN 
INDUSTRIAL CITY 
Tatyana G. Krupnova, Olga V. Rakova, Susanna V. Berentseva, Svetlana V. Gavrilkina and Valerii N. 
Udachin 
 
14:00-15:50 Oral/Poster Session 16 (ROOM C) Thursday, 24 November 2022 
Chair: Dr. Vidit Singh 
g12197, g12203, g12216, g12222, g12238, g12239, g12242, g12293, g12297, g12300, g12310 
 
g12197 APPLICATION OF THE IDEAL FLOW NETWORK (IFN) METHOD TO EVALUATE THE LEVEL OF 
SERVICE ARTERIAL ROADS 
Susilowati, Achmad Wicaksono, Ludfi Djakfar and Solimun 
 
g12203 THE EFFECT OF CHANGES IN LAND USE ON THE PREDICTION OF CRITICAL LAND 
DISTRIBUTION IN THE RAWAS WATERSHED (SOUTH SUMATRA PROVINCE, INDONESIA) 
Zainuddin Muchtar, Dinar Dwi Anugerah Putranto, Febrian Hadinata, Lawin Bastian and Julian fikri 
  
g12216 COPPER RECOVERY FROM WASTE WIRE HARNESS USING POTASSIUM HIDROXIDE 
Koto Kagawa and Takaaki Wajima 
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14:00-15:50  

 

g12222 INFLUENCE OF COMPOSITION ANALYSIS ON UNIT WEIGHT OF SYNTHETIC MUNICIPAL SOLID 
WASTE 
Vidit Singh and Prof.Taro Uchimura 
  
g12238 SPATIAL STATISTICS AND PERCOLATION PROBABILITY OF PORE-NETWORK IN POROUS 
MEDIA WITH AGGREGATE STRUCTURE 
Junichiro Takeuchi, Yu Song, Yuto Takeuchi and Masayuki Fujihara  
 
g12239 NONLINEAR TIME SERIES ANALYSIS OF IRREGULAR OSCILLATION INDUCED BY SALINE 
INTRUSION IN GROUNDWATER WITH LAB-SCALE EXPERIMENT 
Theara Seng, Junichiro Takeuchi and Masayuki Fujihara 
 
g12242 MODELLING THE EFFECT OF CLIMATE CHANGES ON COASTAL AQUIFERS IN OMAN 
Javed Akhtar, Ahmad Sana, Syed Mohammed Tauseef and Shakila Javed 
 
g12293 STRENGTH PARAMETERS AND THE RATE PROCESS THEORY APPLIED TO COMPACTED 
FADAMA SOILS 
Ola, Samuel Akinlabi, Fadugba, Olaolu George and Nnochiri, Emeka Segun 
 
g12297 SOME QUESTIONS ABOUT GEORGIA'S LANDSCAPES DYNAMICS (ON THE EXAMPLE OF 
SAMTSKHE-JAVAKHETI) 
Maia Tskhavardze, Dali Nikolaishvili, Lia Matchavariani, Lamzira Lagidze and Vazha Trapaidze 
 
g12300 AN EMPIRICAL STUDY OF FLEXURAL STRENGTH OF BEAMS MADE OF RECYCLED AGGREGATE 
CONCRETE FROM CONSTRUCTION AND DEMOLITION WASTE IN HANOI, VIETNAM 
Ha Tan Nghiem, Tran Viet Cuong, Nguyen Ngoc Tan, Phan Quang Minh, Nguyen Tien Dung, Ken 
Kawamoto and Nguyen Hoang Giang 
 
g12310 LEGALIZATION OF THE USE OF MEDICAL MARIJUANA AS A TREATMENT IN THE EFFORT OF 
RENEWING THE NATIONAL HEALTH LAW IN INDONESIA. 
Siska Elvandari, SH., MH 
 

15:50-16:20 Journal Publication Guidance and Closing Remarks (Room B) 

16:20-16:50 Afternoon Refreshments, Group Photo 

16:50 Closure of Conference 

  

Day 4: Friday, 25 November 2022 
 

13:00-17:00 
 

 
Technical Tour 
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FREQUENTLY ASKED QUESTIONS (FAQ) 
 

1) Are participants allowed to shuffle between Rooms B and C to attend different sessions throughout the 
day? 
Ans: Yes 
 
2) When do participants have to select which Room to attend? Is there any program booklet providing 
information on which topics will be held in each session? 
Ans: Participants can attend any Room at any time during each session. Yes, topics are on the program 
details.  
 
3) Each session is allocated 60 min, and there are 6 topics per session. Do the 10-12 minutes allocated to 
each speaker include Q&A? 
Ans: Yes 
 
4) Will there be a Q&A after each topic or a combined Q&A at the end of each session? 
Ans: A combined Q&A will be held at the end of each session. The questioner should ask using the chat. 
They should write the ID for whom the question is intended.  
 
5) Is it still necessary to prepare a poster? 
Ans: It depends on the presenter’s preference to present orally using ppt, pptx, pdf, or poster. 
 
6) When is the deadline for submission of the presentation files? 
Ans: We will send a link and the deadline to all in a few days. 
 
Work Flow: 

Delegates

Visit the Conference Website
Reception Form Submit and Enter 

into the Reception ROOM A

ROOM-A Reception

Non-stop 
(08:30-17:00)
One ZOOM ID

All Staffs on 2nd Day
Finishing 

ROOM-B Opening 
Address

Keynote, Oral/Poster 
Session (Odd No.) 

Non-stop (08:30-17:00)
 Closing  2nd day
 Thanks Giving

ROOM-C Parallel

 Oral/Poster Session
(Even No.)

Non-stop 
(08:30-17:00)
One ZOOM ID

Host will Verify with our Checklist
Provide the link of ROOM B & C 

Inform the Password too 
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To avoid interruption and confusion, each room will have one zoom ID for the whole day. Anyone can 
join and leave at any time.  
 
Our staff’s room is ROOM A. It is the same as the reception room and common room. The reception 
room will have a checklist, and an email list of all participants and verify each ID or participant. This room 
will guide anyone on how to change the name in ID, Q & A procedure, timing according to the program, 
etc. 
 
Keynote/Technical ROOM (B & C) will display the banner (backdrop) with time-frame, session chair 
name, and paper ID of each session during the break-time before each session.  
 
The moderator/host will control everything, including the guidance to the session chair. They will 
start/continue the session if any session chair is absent according to the program. If any presenter does 
not show up, the session will move to the next presenter. Early finishing is ok, but delaying is not 
acceptable.  
 
The staff promises to maintain the non-stop ZOOM ROOM for the day. They always keep an eye to 
permit/allow the delegates to enter at any time. If any interruption occurs (unexpectedly), the host will 
create an emergency ZOOM ID and send it to all to start the program quickly. 
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ACCESS INFORMATION 
 

 

Swissôtel Bangkok Ratchada 

204 RACHADAPISEK ROAD, HUAY KWANG, BANGKOK 10320 สวสิโซเทลกรงุเทพรัชดา 204 

ถนนรัชดาภเิษกหว้ยขวางกรงุเทพมหานคร 10320  

TELEPHONE: +66 2694 2222 BANGKOK-LECONCORDE@SWISSOTEL.COM 
https://www.swissotel.com/hotels/bangkok-ratchada/ 

 

 
Source: Google maps 

 
It is a luxurious five-star hotel located on Rachadapisek Road, Bangkok’s new thriving 
central business and entertainment district, and is approximately 40 minutes away 
from the Suvarnabhumi International Airport. The Huai Kwang MRT train station is a 
two-minutes walk from the hotel with Bangkok’s prime tourist attractions, central 
business district and convention center just a few train stations away. 
 

https://www.swissotel.com/hotels/bangkok-ratchada/
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RAW MATERIAL OPTIMIZATION WITH NEURAL NETWORK 
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ABSTRACT: The development of construction is presently experiencing rapid growth in Indonesia, leading 
to the requirement of the right materials for infrastructural enhancements. From the existing infrastructure, 
concrete innovations such as precasts are needed with good quality materials, for the quick completion of 
constructions. This is because the need for good quality and smooth material helps to determine the success of 
a building project, with the use of technology through precast being a problem-solving process. Therefore, this 
study aims to analyze the patterns by which inventory procurement predictions produce precasts with good 
quality, using the e readiness framework concept of the neural network through appropriate decision-making 
processes. It also focuses on innovating technological products used in the Indonesian precast industry. The 
Methodology Neural Network was used to produce the best target quality time and precast commodities. The 
result indicated two outputs from 2 neural network models, using five similar input-value variables. Based on 
the Adaline neural network, the outputs were observed as the highest sales-cost predictions for precast products, 
which often occurred in 1, 5, 6 and 9 months. Besides this, production activities were also normally operated 
at level (1), with profit optimization being highly considered before months 1, 5, 6 and 9. For the LVQ neural 
network, the result was a predictive classification of class intensity levels, where fast decision-making 
processes occurred in months 1, 6 and 9. Cost optimization was also carried out by ordering raw materials 
several months in advance, considering the trend in material prices and logistics.   
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1. INTRODUCTION 
 

Concrete is formed by raw material components, 
namely cement, aggregates, sand and admixture [1] .  
In its development, concrete technology continues to 
innovate and develop. The use of cast concrete in 
place is common, along with its development 
concrete can be cast elsewhere and when it is formed 
it is used in buildings according to their needs or what 
is better known as precast. According to the 
2847:2019 standard [2], precast concrete is a 
structural concrete element that is cast elsewhere 
from its final position in the structure. In other words, 
precast is a concrete component with reinforcement 
that has been printed in a factory and the assembly is 
carried out at the project site. The use of precast 
concrete can reduce the duration of work 3,94% - 
72,97%, the number of workers 51,33% - 87,45%, 
budget plan 3,05% - 37,57%, the use of wood as 
formwork and scaffolding 90,11% -98,81% [3].  
Examples of using precast are spunpile used for high-
rise building foundations, girders for bridges, facades 
used for building walls, lining used for retaining walls 
in rivers. U-Ditch is used for drainage or irrigation 
channels and Box Culvert is used in waterway 
construction, so it is often refered to as a sewer.  

Currently precast is needed to speed up the 
execution time, so it doesn’t affect the weather 
factors, this usage is also eco friendly. 

 

 
 
Fig.1 Precast Product Spunpile 
 
      The figure above is an example of a precast 
product, namely a spunpile which is used as a 
foundation for high-rise buildings. There is also a 
spunpile type that is in a box form depending on the 
designation needed in a construction project. 

The Indonesian government has been undergoing 
massive infrastructural development since 2019, with 
an effect observed in the significant increase in 
precast products' demand in 2022. Based on these 
data, precast production was carried out by 76 
registered factories, which were distributed 
throughout the country. Each factory had an increase 
in production, which varied between 210,000-
500,000 tons yearly, to serve the increasing demand. 
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This indicated that the average monthly production of 
each organization needs to reach 45,000 tons.  

In Indonesia, efficiency is often measured from a 
cost and time perspective, showing that the use of 
precast concrete is more efficient than conventional 
methods [4]. Although this utilization is more 
efficient, technology-based precast supply chain 
parameters still need to become effective support. 
This supply chain is classified into various phases, 
namely planning, designing, manufacturing, 
transportation, installation, and construction. To 
achieve an integrated construction, the parties in these 
phases need to have efficient communication and 
effective collaboration in providing accurate and up-
to-date information. According to the governmental 
data, the main problems in the precast supply chain 
phases began from the following, (1) poor planning, 
(2) ineffective communication between designers and 
manufacturers, (3) incompetent employees/workers, 
(4) damage to raw materials, and (5) large sizes and 
heavy precast components and coordination in the 
bad project site. Besides these conditions, the key 
issues also contributed to negative consequences on 
the efficiency, productivity and effectiveness of 
precast delivery [5]. After procurement, the damages 
to raw materials are often found to affect the quality 
of the process and precast production during the 
inventory phase (initial stage). This explains that the 
procurement division needs to be able to provide the 
certainty of scheduling receipts for efficient project 
completion when ordering raw materials. Irrespective 
of these conditions, practical raw material orders and 
assembly time have still not been highly considered, 
leading to the probable effects and implications of 
excess inventory occurrences and additional project-
financing increment, respectively. Therefore, a 
methodology should be determined for the effective, 
efficient, and economical control of precast plants’ 
inventory management [6]. 

The utilization of technology has reportedly been 
implemented widely, to support the management of 
raw materials during the inventory processes. This 
was in line with the raw material control for precast 
tunnelling projects in China [7], where many 
businesses were leveraging historical sales and 
demand data to implement intelligent inventory 
management systems. Demand forecasting involves 
predicting/ensuring the consumption/collection of 
precast raw materials. This plays an important role in 
the area of inventory control and supply chain, due to 
enabling production and distribution planning. It is 
also conditioned to reduce raw material delivery 
times and optimize decisions on the supply chain [8]. 
This is to help the developers and operators of 
inventory management systems in improving 
efficiency, maximizing productivity, and minimizing 
material losses [9]. 

Many studies have also evaluated smart inventory 
implementation, namely the dynamic brick-and-

mortar supply chain analysis. This evaluated the 
benefits of implementing smart applications and 
systems to improve Vendor Managed Inventory 
(VMI) efficiency. In the supply chain mechanism, the 
manufacturer configured the production level and 
replenished the inventory at the retailer's store, where 
prices were set up to affect sales and inventory. In this 
condition, the company also shared the revenue and 
inventory costs through an agreement. This condition 
was very dynamic when inventory increased and 
decreased at production and sales levels respectively, 
with periodical variations observed according to 
several stochastic errors [10]. In this case, the need 
for accurate predictions led to a more effective and 
cheap supply chain, as well as allowed companies to 
provide quality, quantity, periodical, and low-
production cost products [11]. Many studies also used 
other machine learning approaches to map prediction 
patterns, such as fuzzy subtractive clustering 
[12].Therefore, this study aims to analyze the patterns 
by which inventory procurement predictions produce 
precast products with good quality, using the e-
readiness framework concept of the neural network 
method through appropriate decision-making 
processes. In this condition, prediction modelling was 
prepared as part of the application of e-readiness in 
raw material management. The pattern of obtaining 
these materials was also used as the best test data, to 
assess the management model in smart inventory. 

 
2. RESEARCH SIGNIFICANCE 

 
Integration and utilization in the field of precast 

manufacturing is still not widely found. Integration 
requires redefining for adjustments in corporate 
culture in precast companies. The redefinition was 
carried out for reasons of planning the preparation of 
raw materials as precast making materials. Optimal 
material ordering must match the project schedule, 
raw material repository and technology. Order 
optimization is carried out with strict monitoring 
supported by customized e-readiness technology 
selection. Customize technology selection by 
implementing 2 neural network models namely; 
adaptive linear (Adaline) and linear vector 
quantization (LVQ) are still not common. 

 
3. LITERATURE REVIEW  
 
3.1 E-Readiness 
 

Technology Readiness Index (TRI) 1.0 is 
constructed based on four-dimensional aspects, 
namely Optimism, Innovation, Discomfort, and 
Insecurity [13], as shown in Fig. 1. This is often 
applied to a company with the Strategic Alignment 
Maturity Model (SAMM), to determine the 
utilization level of information systems in all business 
operations [14]. It is also one of the innovative 
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references used in managing highly efficient logistics. 
In addition, TRI is related to the Global 
Competitiveness and Logistics Performance Indexes 
(GCI & LPI), as well as other similar supportive 
dimensions. 

 
 

Fig.2 E-Readiness Technology   
 

In precast manufacturing companies, technology 
is also used in raw material management, by 
arranging and using a very suitable procedural 
schedule and method, respectively. Using linear 
programming methods, Markov models, and genetic 
algorithms, scheduling often emphasizes the 
management of time to handle and obtain raw 
materials [15]–[17]. In this condition, a good 
inventory receipt system is needed to provide more 
value during the prediction process, where efficient 
and periodical systematic performance is a function 
of operational activities. This helps to reduce time 
consumption in determining optimal operations in 
various parameters [18]. Additionally, process 
quality problems and production cost efficiency are 
adequately maintained [1], [19], [20]. 
 
3.2 Neural Network  

 
The amount of inventory is often related to the 

company's profit and the entire supply chain's 
survival. This indicates that prediction processes need 
to increase the company's ability to prevent risks, 
improve profits, and reduce losses during the 
acquisition of inventory, using the backpropagation 
neural network (BP) method [21], [22]. Some reports 
were also observed based on the development of 
technology readiness, such as [23], [24]. This 
emphasized determining the optimization value of 
material handling, using a neural network with 2 
algorithm methods, namely ALN and LVQ (Adaptive 
Linear Neuron and Linear Vector Quantization). 
These methods led to the prediction of cost-benefit 
into 3 categorical levels, namely high, medium, and 
low demand, as shown in Fig. 3. 

 

 
Fig.3 Neural Network Model based on E Readiness 
 

Based on the figure above, even though it uses 2 
(two) models, namely the adaptive linear model and 
Linear vector quantization, both have the same input. 
Inputs come from Raw material receiving, vendor 
level and regional and enterprise technology 
infrastructure.  
 
3.3 Adaline 
 

ADALINE (Adaptive Linear Neuron or later 
Adaptive Linear Element) is an early single-layer 
artificial neural network, which is implemented as an 
algorithm to predict outputs with an automatic 
controller. Although the accuracy obtained is not 
satisfactory, the value still changes and becomes 
highly precise during more data analyses [25]. In the 
following equation, an input vector (K) is observed 
with the pattern. 
 Xk=[x0, x1k, x2k, ..., xnk]T  (1)                               
Where Xk = the components of the weights and 
coefficients. Moreover, a weight vector (Wk) is 
observed in the Eq. (2) as follows, 
Wk = [wx0, w1k, w2k, ..., wnk]T                                    (2), 
where K

T
KK XWy   . 

Output 



k

W
k

X
n

k
yk

1
 

Adaptive learning rule  
Learning is also known as the Least Mean Square 
(LMS), whose rules in this process are observed as 
follows, 
W ← W + Ƞ(d – o)x                                         (3) 
 
 
3.4 Linear Vektor Equations Quantization (LVQ) 
Model 
 

This is one of the widely used ANN models 
(Artificial Neural Network), which emphasizes the 
prototype of a supervised learning classification 
algorithm and its network. These are trained through 
a competitive method similar to the Self-Organizing 
Map. The clustering technique is also used as a 
classifier to evaluate the deviations in the data sample 
through a random or specific density. This shows that 
performance remains the same with almost all 

Optimism Innovativeness

Discomfort Insecurity

Technology Readiness

Linear Vector 
Quantization (LVQ) 

Model

Adaptive Linear (Adaline) 
Model

In
pu

t

Class 

Cost
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combinations of training and testing [26]. Based on 
the following formula, learning is conducted by 
calculating the euclidian distance, 

),(min),( kk wxdwxd


                                  (4) 

Wk  (weight improvement) is also used to determine 
the weight (w) with the smallest distance value (d) as 
follows, 

).( kkk wxww


  , when cm =/≠ y, it is close 

to each other or part of the set, respectively. 
 
 

4. METHODOLOGY 
 
Research scenarios or methodologies must be 

carried out in order to achieve valid and accurate 
research results. In general, this research was 
conducted according to the methodology as shown in 
figure 3 below. Input from the system is in the form 
of monitoring data from e-readiness technology, 
processes and neural network learning carried out to 
achieve cost results and decision classes.  

 
Readiness 
technology

ExternalInternal

Fiture 
Extraction

Define target data
Normalized Data

Define test dataRaw Material 
Supply pattern

Precast selling 
pattern

Adaptive Linear 
Neural Network

Linear Vector Quantization  
Neural Network

Class | CategorizationCost  
 
Fig.4 Study Methodology 

 
The e-readiness technology emphasized the 

following factors, (1) security, (2) technical issues, 
(3) software reliability, (4) digital operations for 
internet usage, and (5) technical skill utilization [27]. 
The concept of this technical influence also originated 
from internal and external organizations, as shown in 
Fig.4. Feature Extraction serves to normalize raw 
material pattern data, precast selling pattern. In 
addition to also performing categories of data 
functions and training both neural network 
architecture models in used. Test data is used as 
inputs and targets based on monthly data patterns that 
occur. Internal data e readiness is an advantage to be 
achieved by making improvements by improving the 
quality and quantity of company resources. External 
e readiness is intended to look at competing 
companies that have the same core business and 
available infrastructure and can support company 
performance. 

Relative 
Advantage Market Foces E 

readiness

E readiness Internal

Top Management 
Beliefs

Technology 
Resources

Supporting Industri E 
Readiness

E Business 
Adoption

Control Variable
- Size
- Age
- Ownership
- Industry Type

E readiness External

 
 

Fig.5 The concept of e-readiness influence 
 

        Based on the external conditions, e-readiness 
emphasized many factors regarding the case 
perspective of each corporation in its respective 
business field. In this study, these factors were 
limited, including the IT technology infrastructure 
supporting the precast industry and the vendor market 
for raw materials. Meanwhile, the internal conditions 
of this technology focused on related technical 
improvements, using neural network methods for 
prediction processes.  
 

4.1 Feature Extraction 

The internal data sources were the direct 
measurement of the goods’ receipts, regarding the 
yearly production of raw materials at precast 
organizations. In this condition, the raw material 
parameters included cement, sand, and aggregate. In 
preparation for the precast products, a value 
extraction was also observed for the contributions of 
the materials and costs, as shown in Fig.6. This 
showed that the cement and aggregate costs and 
materials were the largest/lowest and smallest/highest 
contributions, respectively. 
 

 
Fig.6 Cost Contribution (a)  production (m3) and 

material contribution (b) precast product 
 
The second parameter focused on the monthly-

supply behaviour pattern of each raw material for a 
year, as shown in Fig.7. 
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Fig.7  Annual supply pattern of precast raw materials 
 

Based on the pattern that occurs as can be seen in 
Figure 7, it can be seen that the pattern of each raw 
material (cement, aggregate and sand) has the same 
correlation even though it differs in the volume of 
orders. The data comes from ordering raw materials 
for a year (12 months). The highest order is cement, 
aggregate then sand. 

 

4.2 Data Test 

 
This emphasized the data of sand, aggregate and 

cement, which were mixed based on the best quality 
standard of Indonesian concrete category K 500-K 
600. These data were obtained according to the order 
for 12 months, as shown in Table 1. 
 
Table 1 Precast raw material cost 

 
No Materials Cost IDR (m3) 
1 Sand 242,000 
2 Aggregate 200,000 
3 Cement 715,000 

 
 
4.3 Normalized Data 

 
The nominal unit of numeric data was normalized 

to facilitate data processing in the neural network 
architecture. This indicated that normalization was 
carried out by mapping into numbers between 0 and 
1, as shown in the following formula, 

minmax

min

XX

XX
X Original

Map 


                                      (4)                 

 Where :  
Xmap = Normalization Value 
X Original = Original Value 
X max = Maksimum Value 
X Min = Minimum Value 
 

In 2021, the normalization of input variables were 
also carried out on the price of raw materials, 
frequency of intermediaries, and volume of  

transaction costs. Moreover, the target data originated 
from the average total sales of precast products in the 
same year. 

 
4.4 Target Data  

 
The target data contained three vectors, namely 

the minimum, maximum, and median sales values of 
the total cost, as shown in Fig.8. 
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Fig.8 Total precast unit cost for the year. 
 
Based on Fig.8, the optimization patterns of the 

raw material supply and sales profits were observed 
when the production target need to achieve 45,000 
tons monthly with a minimum unit cost of IDR800 
million. 
 
5. DISCUSSION 
 
     Based on the external conditions, the system input 
parameters included the readiness of IT technology 
infrastructure, which supported the precast industry 
and market vendors providing raw materials. In this 
analysis, the final output was a value within a 
specified range. Meanwhile, the internal input factors 
included the monthly frequency of raw material 
supplies in a year (Tons). Table 2 shows the input and 
target variables of this analysis. 

 
Table 2 Input Parameter Identification and Prediction 
 

No 
Input 

Parameter 
Prediction Parameter  

Adaline  LVQ 
1. IT Readiness 

Infrastructure 

Monthly 
Precast 
Selling 
Patterns 

Decision 
Classification 

Level 

2. Level Market 
Vendor 

3. Cement 
Contributions 

(monthly) 
4. Aggregate 

Contributions 
(monthly) 

5. Sand 
Contributions 

(monthly) 
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5.1  Architecture Neural Network Adaline  
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Fig.9 Adaline Architecture 
 

 
Based on Fig.9, five defined input values were 

observed, indicating a linear activation function 
between 0 and 1.  The figure describes the neural 
network architecture of the adaline model. This 
model uses a single layer of neurons and will carry 
out the learning process to achieve optimal 
architectural weights. The optimal architectural 
weight will produce a number that can be calibrated 
against the precast sales data pattern. 
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X4

Xn
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Fig.10 Linear Vector Quantization Architecture 
 

In Fig.10 five defined input values were also 
observed, where a linear classification produced 3 
cluster categories. The figure explains the neural 
network architecture of the Linear vector quantization 
model. This model uses competitive layer and linear 
layer neurons as its output. This architecture will 
carry out the learning process to achieve optimal 
architectural weight. Optimal architectural weight 
will result in a class classification of precast sales data 
patterns. 

 
 5.2  Simulation Result 

 
The final stage of the process in a neural network 

model is to produce the final result. Simulations are 
carried out to measure whether the model is 
functioning as expected. The input parameters, the 
weights of the neural network learning outcomes to 
the output parameters will be tested according to their 
respective functions on the results. The model is 
declared good if several data scenarios until the 
output has been achieved. 
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Fig.11 Adaline Method simulation results 
 

According to Fig.11, the pattern of obtaining raw 
materials for precast products fluctuated based on the 
test data from 2021, through the Adaline method 
learning for a year. In this condition, the lowest orders 
were in the 3rd, 8th, 11th, and 12th months when 5 
parameters were inputted into this method. 
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Fig.12 LVQ Method Simulation Result 

 
Based on Fig.12, the pattern of obtaining raw 

materials for precast products also fluctuated 
regarding the test data from 2021, through the LVQ 
method learning for a year. This proved that the 
highest classes and the best values occurred in the 1st, 
6th, and 9th months when 5 parameters were inputted 
into this method, with the lowest orders observed on 
the 2nd, 3rd, 4th, 7th, 8th, 10th, 11th, and 12th period. 
In the 5th month, the values obtained were also found 
not to be very high or low. These actions emphasized 
the option of maintaining existing raw materials or 
placing orders regarding the increment of the 
previous month. 

 
Table 3 Class and Cost Relation 

 
No. Month Classes Cost (IDR) 
1 Jan 3  3,644,810 
2 Feb 1 1,829,060 
3 Mar 1 804,661  
4 Apr 1  1,724,870  
5 May 2  2,097,578  
6 Jun 3  2,872,875  
7 Jul 1  2,370,019  
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8 Aug 1  1,170,018  
9 Sep 3  2,464,231  
10 Oct 1  2,010,972  
11 Nov 1  895,467  
12 Dec 1  942,555  

 
 According to Table 3, the second and third months 
had different advantages, although they were in class 
(1). This was in line with the eighth and eleventh 
months. The midpoint was also observed in class (2), 
which occurred in the 5th month. However, the 1st, 
6th, and 9th months exhibited quite a large amount of 
transactions, leading to the significant effects on the 
order of raw materials and logistics financing 
considerations.  
 
6. CONCLUSION 
 

Based on these results, cost optimization was 
conducted by accepting and creating new orders when 
the conditions were found in class (2). This action 
was often carried out by observing the trend of the 
previous month. Due to the high-order rate, the 
classes also showed that the level of operations need 
be accelerated and periodically limited when the 
conditions were categorized in class (3). For class (2), 
the order for raw materials was only performed by 
observing the Adaline method simulation, since a 
tendency was found for the market to absorb precast 
products in the following month. Furthermore, the 
application of the neural network method was 
appropriately implemented when supported by 
external e-readiness factors, including the which 
include infrastructure preparedness and many 
material vendor options. The implementation of this 
conceptual technology also used 2 neural network 
models for precast products. This involved the 
processing and production of similar input values and 
different decision model simulation, respectively. 
Irrespective of these differences, a strong correlation 
was still observed with the time efficiency of the 
decision-making process. Therefore, bother LVQ and 
Adaline contributed 50% to this decision approach.  
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ABSTRACT: The development of construction is presently experiencing rapid growth in Indonesia, leading 
to the requirement of the right materials for infrastructural enhancements. From the existing infrastructure, 
concrete innovations such as precasts are needed with good quality materials, for the quick completion of 
constructions. This is because the need for good quality and smooth material helps to determine the success of 
a building project, with the use of technology through precast being a problem-solving process. Therefore, this 
study aims to analyze the patterns by which inventory procurement predictions produce precasts with good 
quality, using the e readiness framework concept of the neural network through appropriate decision-making 
processes. It also focuses on innovating technological products used in the Indonesian precast industry. The 
Methodology Neural Network was used to produce the best target quality time and precast commodities. The 
result indicated two outputs from 2 neural network models, using five similar input-value variables. Based on 
the Adaline neural network, the outputs were observed as the highest sales-cost predictions for precast products, 
which often occurred in 1, 5, 6 and 9 months. Besides this, production activities were also normally operated 
at level (1), with profit optimization being highly considered before months 1, 5, 6 and 9. For the LVQ neural 
network, the result was a predictive classification of class intensity levels, where fast decision-making 
processes occurred in months 1, 6 and 9. Cost optimization was also carried out by ordering raw materials 
several months in advance, considering the trend in material prices and logistics.   
 
Keywords: Raw Material, Neural Network, Concrete, Precast 
 
 

1. INTRODUCTION 
 

Concrete is formed by raw material components, 
namely cement, aggregates, sand and admixture [1].  
In its development, concrete technology continues to 
innovate and develop. The use of cast concrete in 
place is common, along with its development 
concrete can be cast elsewhere and when it is formed 
it is used in buildings according to their needs or what 
is better known as precast. According to the 
2847:2019 standard [2], precast concrete is a 
structural concrete element that is cast elsewhere 
from its final position in the structure. In other words, 
precast is a concrete component with reinforcement 
that has been printed in a factory and the assembly is 
carried out at the project site. The use of precast 
concrete can reduce the duration of work 3,94% - 
72,97%, the number of workers 51,33% - 87,45%, 
budget plan 3,05% - 37,57%, the use of wood as 
formwork and scaffolding 90,11% -98,81% [3].  
Examples of using precast are spunpile used for high-
rise building foundations, girders for bridges, facades 
used for building walls, lining used for retaining walls 
in rivers. U-Ditch is used for drainage or irrigation 
channels and Box Culvert is used in waterway 
construction, so it is often refered to as a sewer.  

Currently precast is needed to speed up the 
execution time, so it doesn’t affect the weather 
factors, this usage is also eco friendly. 

 

 
 
Fig. 1 Precast Product Spunpile 
 
      The figure above is an example of a precast 
product, namely a spunpile which is used as a 
foundation for high-rise buildings. There is also a 
spunpile type that is in a box form depending on the 
designation needed in a construction project. 

The Indonesian government has been undergoing 
massive infrastructural development since 2019, with 
an effect observed in the significant increase in 
precast products' demand in 2022. Based on these 
data, precast production was carried out by 76 
registered factories, which were distributed 
throughout the country. Each factory had an increase 
in production, which varied between 210,000-
500,000 tons yearly, to serve the increasing demand. 
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This indicated that the average monthly production of 
each organization needs to reach 45,000 tons.  

In Indonesia, efficiency is often measured from a 
cost and time perspective, showing that the use of 
precast concrete is more efficient than conventional 
methods [4]. Although this utilization is more 
efficient, technology-based precast supply chain 
parameters still need to become effective support. 
This supply chain is classified into various phases, 
namely planning, designing, manufacturing, 
transportation, installation, and construction. To 
achieve an integrated construction, the parties in these 
phases need to have efficient communication and 
effective collaboration in providing accurate and up-
to-date information. According to the governmental 
data, the main problems in the precast supply chain 
phases began from the following, (1) poor planning, 
(2) ineffective communication between designers and 
manufacturers, (3) incompetent employees/workers, 
(4) damage to raw materials, and (5) large sizes and 
heavy precast components and coordination in the 
bad project site. Besides these conditions, the key 
issues also contributed to negative consequences on 
the efficiency, productivity and effectiveness of 
precast delivery [5]. After procurement, the damages 
to raw materials are often found to affect the quality 
of the process and precast production during the 
inventory phase (initial stage). This explains that the 
procurement division needs to be able to provide the 
certainty of scheduling receipts for efficient project 
completion when ordering raw materials. Irrespective 
of these conditions, practical raw material orders and 
assembly time have still not been highly considered, 
leading to the probable effects and implications of 
excess inventory occurrences and additional project-
financing increment, respectively. Therefore, a 
methodology should be determined for the effective, 
efficient, and economical control of precast plants’ 
inventory management [6]. 

The utilization of technology has reportedly been 
implemented widely, to support the management of 
raw materials during the inventory processes. This 
was in line with the raw material control for precast 
tunnelling projects in China [7], where many 
businesses were leveraging historical sales and 
demand data to implement intelligent inventory 
management systems. Demand forecasting involves 
predicting/ensuring the consumption/collection of 
precast raw materials. This plays an important role in 
the area of inventory control and supply chain, due to 
enabling production and distribution planning. It is 
also conditioned to reduce raw material delivery 
times and optimize decisions on the supply chain [8]. 
This is to help the developers and operators of 
inventory management systems in improving 
efficiency, maximizing productivity, and minimizing 
material losses [9]. 

Many studies have also evaluated smart inventory 
implementation, namely the dynamic brick-and-

mortar supply chain analysis. This evaluated the 
benefits of implementing smart applications and 
systems to improve Vendor Managed Inventory 
(VMI) efficiency. In the supply chain mechanism, the 
manufacturer configured the production level and 
replenished the inventory at the retailer's store, where 
prices were set up to affect sales and inventory. In this 
condition, the company also shared the revenue and 
inventory costs through an agreement. This condition 
was very dynamic when inventory increased and 
decreased at production and sales levels respectively, 
with periodical variations observed according to 
several stochastic errors [10]. In this case, the need 
for accurate predictions led to a more effective and 
cheap supply chain, as well as allowed companies to 
provide quality, quantity, periodical, and low-
production cost products [11]. Many studies also used 
other machine learning approaches to map prediction 
patterns, such as fuzzy subtractive clustering 
[12].Therefore, this study aims to analyze the patterns 
by which inventory procurement predictions produce 
precast products with good quality, using the e-
readiness framework concept of the neural network 
method through appropriate decision-making 
processes. In this condition, prediction modelling was 
prepared as part of the application of e-readiness in 
raw material management. The pattern of obtaining 
these materials was also used as the best test data, to 
assess the management model in smart inventory. 

 
2. RESEARCH SIGNIFICANCE 

 
Integration and utilization in the field of precast 

manufacturing is still not widely found. Integration 
requires redefining for adjustments in corporate 
culture in precast companies. The redefinition was 
carried out for reasons of planning the preparation of 
raw materials as precast making materials. Optimal 
material ordering must match the project schedule, 
raw material repository and technology. Order 
optimization is carried out with strict monitoring 
supported by customized e-readiness technology 
selection. Customize technology selection by 
implementing 2 neural network models namely; 
adaptive linear (Adaline) and linear vector 
quantization (LVQ) are still not common. 

 
3. LITERATURE REVIEW  
 
3.1 E-Readiness 
 

Technology Readiness Index (TRI) 1.0 is 
constructed based on four-dimensional aspects, 
namely Optimism, Innovation, Discomfort, and 
Insecurity [13], as shown in Fig. 1. This is often 
applied to a company with the Strategic Alignment 
Maturity Model (SAMM), to determine the 
utilization level of information systems in all business 
operations [14]. It is also one of the innovative 
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references used in managing highly efficient logistics. 
In addition, TRI is related to the Global 
Competitiveness and Logistics Performance Indexes 
(GCI & LPI), as well as other similar supportive 
dimensions. 

 
Fig. 2 E-Readiness Technology   
 

In precast manufacturing companies, technology 
is also used in raw material management, by 
arranging and using a very suitable procedural 
schedule and method, respectively. Using linear 
programming methods, Markov models, and genetic 
algorithms, scheduling often emphasizes the 
management of time to handle and obtain raw 
materials [15]–[17].  

In this condition, a good inventory receipt system 
is needed to provide more value during the prediction 
process, where efficient and periodical systematic 
performance is a function of operational activities. 
This helps to reduce time consumption in determining 
optimal operations in various parameters [18]. 
Additionally, process quality problems and 
production cost efficiency are adequately maintained 
[1], [19], [20]. 
 
3.2 Neural Network  

 
The amount of inventory is often related to the 

company's profit and the entire supply chain's 
survival. This indicates that prediction processes need 
to increase the company's ability to prevent risks, 
improve profits, and reduce losses during the 
acquisition of inventory, using the backpropagation 
neural network (BP) method [21], [22]. Some reports 
were also observed based on the development of 
technology readiness, such as [23], [24]. This 
emphasized determining the optimization value of 
material handling, using a neural network with 2 
algorithm methods, namely ADALINE (Adaptive 
Lenear Neuron) and LVQ (Linear Vector 
Quantization). ADALINE network functions to 
perform cost projection. LVQ model function led to 
the prediction of cost-benefit into 3 categorical levels, 
namely high, medium, and low demand, as shown in 
figure 3. 

 

 
Fig. 3 Neural Network Model based on E Readiness 
 

Based on the figure above, even though it uses 2 
(two) models, namely the adaptive linear model and 
Linear vector quantization, both have the same input. 
Inputs come from Raw material receiving, vendor 
level and regional and enterprise technology 
infrastructure.  
 
3.3 Adaline 
 

ADALINE (Adaptive Linear Neuron or later 
Adaptive Linear Element) is an early single-layer 
artificial neural network, which is implemented as an 
algorithm to predict outputs with an automatic 
controller. Although the accuracy obtained is not 
satisfactory, the value still changes and becomes 
highly precise during more data analyses [25]. In the 
following equation, an input vector (K) is observed 
with the pattern. 
 Xk=[x0, x1k, x2k, ..., xnk]T  (1)                               
Where Xk = the components of the weights and 
coefficients. Moreover, a weight vector (Wk) is 
observed in the Eq. (2) as follows, 
Wk = [wx0, w1k, w2k, ..., wnk]T                                    (2), 
where K

T
KK XWy   . 

Output 



k

W
k

X
n

k
yk

1
 

Adaptive learning rule  
Learning is also known as the Least Mean Square 
(LMS), whose rules in this process are observed as 
follows, 
W ← W + Ƞ(d – o)x                                         (3) 
 
 
3.4 Linear Vektor Equations Quantization (LVQ) 
Model 
 

This is one of the widely used ANN models 
(Artificial Neural Network), which emphasizes the 
prototype of a supervised learning classification 
algorithm and its network. These are trained through 
a competitive method similar to the Self-Organizing 
Map. The clustering technique is also used as a 
classifier to evaluate the deviations in the data sample 
through a random or specific density. This shows that 

Optimism Innovativeness

Discomfort Insecurity

Technology Readiness

Linear Vector 
Quantization (LVQ) 

Model

Adaptive Linear (Adaline) 
Model
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pu
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performance remains the same with almost all 
combinations of training and testing [26]. Based on 
the following formula, learning is conducted by 
calculating the euclidian distance, 

),(min),( kk wxdwxd


                                  (4) 

Wk  (weight improvement) is also used to determine 
the weight (w) with the smallest distance value (d) as 
follows, 

).( kkk wxww


  , when cm =/≠ y, it is close 

to each other or part of the set, respectively. 
 
 

4. METHODOLOGY 
 
Research scenarios or methodologies must be 

carried out in order to achieve valid and accurate 
research results. In general, this research was 
conducted according to the methodology as shown in 
figure 4 below. Input from the system is in the form 
of monitoring data from e-readiness technology, 
processes and neural network learning carried out to 
achieve cost results and decision classes.  

 
Readiness 
technology

ExternalInternal

Fiture 
Extraction

Define target data
Normalized Data

Define test dataRaw Material 
Supply pattern

Precast selling 
pattern

Adaptive Linear 
Neural Network

Linear Vector Quantization  
Neural Network

Class | CategorizationCost  
 
Fig. 4 Study Methodology 

 
The e-readiness technology emphasized the 

following factors, (1) security, (2) technical issues, 
(3) software reliability, (4) digital operations for 
internet usage, and (5) technical skill utilization [27]. 
The concept of this technical influence also originated 
from internal and external organizations, as shown in 
figure 4. Feature Extraction serves to normalize raw 
material pattern data, precast selling pattern. In 
addition to also performing categories of data 
functions and training both neural network 
architecture models in used. Test data is used as 
inputs and targets based on monthly data patterns that 
occur. Internal data e readiness is an advantage to be 
achieved by making improvements by improving the 
quality and quantity of company resources. External 
e readiness is intended to look at competing 
companies that have the same core business and 
available infrastructure and can support company 

performance. 
 

Relative 
Advantage Market Foces E 

readiness

E readiness Internal

Top Management 
Beliefs

Technology 
Resources

Supporting Industri E 
Readiness

E Business 
Adoption

Control Variable
- Size
- Age
- Ownership
- Industry Type

E readiness External

 
 

Fig. 5 The concept of e-readiness influence 
 

        Based on the external conditions, e-readiness 
emphasized many factors regarding the case 
perspective of each corporation in its respective 
business field. In this study, these factors were 
limited, including the IT technology infrastructure 
supporting the precast industry and the vendor market 
for raw materials. Meanwhile, the internal conditions 
of this technology focused on related technical 
improvements, using neural network methods for 
prediction processes.  
 

4.1 Feature Extraction 

 
The internal data sources were the direct 

measurement of the goods’ receipts, regarding the 
yearly production of raw materials at precast 
organizations. In this condition, the raw material 
parameters included cement, sand, and aggregate. In 
preparation for the precast products, a value 
extraction was also observed for the contributions of 
the materials and costs, as shown in figure 6. This 
showed that the cement and aggregate costs and 
materials were the largest/lowest and smallest/highest 
contributions, respectively. 
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COST PRECAST PRODUCTION  

Sand
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Fig. 6 Cost Contribution (a)  production (m3) and 
material contribution (b) precast product 
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The second parameter focused on the monthly-
supply behaviour pattern of each raw material for a 
year, as shown in figure 7. 
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Fig. 7  Annual supply pattern of precast raw materials 
 

Based on the pattern that occurs as can be seen in 
Figure 7, it can be seen that the pattern of each raw 
material (cement, aggregate and sand) has the same 
correlation even though it differs in the volume of 
orders. The data comes from ordering raw materials 
for a year (12 months). The highest order is cement, 
aggregate then sand. 

 

4.2 Data Test 

 
This emphasized the data of sand, aggregate and 

cement, which were mixed based on the best quality 
standard of Indonesian concrete category K 500-K 
600. These data were obtained according to the order 
for 12 months, as shown in table 1. 
 
Table 1 Precast raw material cost 

 
No Materials Cost IDR (m3) 
1 Sand 242,000 
2 Aggregate 200,000 
3 Cement 715,000 

 
4.3 Normalized Data 

 
The nominal unit of numeric data was normalized 

to facilitate data processing in the neural network 
architecture. This indicated that normalization was 
carried out by mapping into numbers between 0 and 
1, as shown in the following formula, 

minmax

min

XX

XX
X Original

Map 


                                      (4)                 

 Where :  
Xmap = Normalization Value 
X Original = Original Value 
X max = Maksimum Value 
X Min = Minimum Value 
 

In 2021, the normalization of input variables were 
also carried out on the price of raw materials, 

frequency of intermediaries, and volume of  
transaction costs. Moreover, the target data originated 
from the average total sales of precast products in the 
same year. 

 
4.4 Target Data  

 
The target data contained three vectors, namely 

the minimum, maximum, and median sales values of 
the total cost, as shown in figure 8. 
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Fig. 8 Total precast unit cost for the year. 
 
Based on figure 8, the optimization patterns of the 

raw material supply and sales profits were observed 
when the production target need to achieve 45,000 
tons monthly with a minimum unit cost of IDR800 
million. 
 
5. DISCUSSION 
 
     Based on the external conditions, the system input 
parameters included the readiness of IT technology 
infrastructure, which supported the precast industry 
and market vendors providing raw materials. In this 
analysis, the final output was a value within a 
specified range. Meanwhile, the internal input factors 
included the monthly frequency of raw material 
supplies in a year (Tons). Table 2 shows the input and 
target variables of this analysis. 

 
Table 2 Input Parameter Identification and Prediction 
 

No 
Input 

Parameter 
Prediction Parameter  

Adaline  LVQ 
1. IT Readiness 

Infrastructure 

Monthly 
Precast 
Selling 
Patterns 

Decision 
Classification 

Level 

2. Level Market 
Vendor 

3. Cement 
Contributions 

(monthly) 
4. Aggregate 

Contributions 
(monthly) 

5. Sand 
Contributions 

(monthly) 
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5.1  Architecture Neural Network Adaline  
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Fig. 9 Adaline Architecture 
 

 
Based on figure 9, five defined input values were 

observed, indicating a linear activation function 
between 0 and 1.  The figure describes the neural 
network architecture of the adaline model. This 
model uses a single layer of neurons and will carry 
out the learning process to achieve optimal 
architectural weights. The optimal architectural 
weight will produce a number that can be calibrated 
against the precast sales data pattern. 
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X4

Xn

.

.

.

 
 

Fig. 10 Linear Vector Quantization Architecture 
 

In figure 10 five defined input values were also 
observed, where a linear classification produced 3 
cluster categories. The figure explains the neural 
network architecture of the Linear vector quantization 
model. This model uses competitive layer and linear 
layer neurons as its output. This architecture will 
carry out the learning process to achieve optimal 
architectural weight. Optimal architectural weight 
will result in a class classification of precast sales data 
patterns. 

 
 5.2  Simulation Result 

 
The final stage of the process in a neural network 

model is to produce the final result. Simulations are 
carried out to measure whether the model is 
functioning as expected. The input parameters, the 
weights of the neural network learning outcomes to 
the output parameters will be tested according to their 
respective functions on the results. The model is 
declared good if several data scenarios until the 
output has been achieved. 

Scenarios from the data will be tested according 
of the upper limit value and lower limit  value of the 
data pattern. 
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Fig. 11 Adaline Method simulation results 
 

According to figure 11, the pattern of obtaining 
raw materials for precast products fluctuated based on 
the test data from 2021, through the Adaline method 
learning for a year. In this condition, the lowest orders 
were in the 3rd, 8th, 11th, and 12th months when 5 
parameters were inputted into this method. 
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Fig. 12 LVQ Method Simulation Result 

 
Based on figure 12, the pattern of obtaining raw 

materials for precast products also fluctuated 
regarding the test data from 2021, through the LVQ 
method learning for a year. This proved that the 
highest classes and the best values occurred in the 1st, 
6th, and 9th months when 5 parameters were inputted 
into this method, with the lowest orders observed on 
the 2nd, 3rd, 4th, 7th, 8th, 10th, 11th, and 12th period. 
In the 5th month, the values obtained were also found 
not to be very high or low. These actions emphasized 
the option of maintaining existing raw materials or 
placing orders regarding the increment of the 
previous month. 

 
Table 3 Class and Cost Relation 

 
No. Month Classes Cost (IDR) 
1 Jan 3  3,644,810 
2 Feb 1 1,829,060 
3 Mar 1 804,661  
4 Apr 1  1,724,870  
5 May 2  2,097,578  
6 Jun 3  2,872,875  
7 Jul 1  2,370,019  
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8 Aug 1  1,170,018  
9 Sep 3  2,464,231  
10 Oct 1  2,010,972  
11 Nov 1  895,467  
12 Dec 1  942,555  

 
 According to table 3, the second and third months 
had different advantages, although they were in class 
(1). This was in line with the eighth and eleventh 
months. The midpoint was also observed in class (2), 
which occurred in the 5th month. However, the 1st, 
6th, and 9th months exhibited quite a large amount of 
transactions, leading to the significant effects on the 
order of raw materials and logistics financing 
considerations.  
 
6. CONCLUSION 
 

Based on these results, cost optimization was 
conducted by accepting and creating new orders when 
the conditions were found in class (2). This action 
was often carried out by observing the trend of the 
previous month. Due to the high-order rate, the 
classes also showed that the level of operations need 
be accelerated and periodically limited when the 
conditions were categorized in class (3). For class (2), 
the order for raw materials was only performed by 
observing the Adaline method simulation, since a 
tendency was found for the market to absorb precast 
products in the following month. Furthermore, the 
application of the neural network method was 
appropriately implemented when supported by 
external e-readiness factors, including the which 
include infrastructure preparedness and many 
material vendor options. The implementation of this 
conceptual technology also used 2 neural network 
models for precast products. This involved the 
processing and production of similar input values and 
different decision model simulation, respectively. 
Irrespective of these differences, a strong correlation 
was still observed with the time efficiency of the 
decision-making process. Therefore, bother LVQ and 
Adaline contributed 50% to this decision approach.  
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ABSTRACT: The development of construction is presently experiencing rapid growth in Indonesia, leading to 
the requirement of the right materials for infrastructural enhancements. From the existing infrastructure, concrete 
innovations such as precasts are needed with good quality materials, for the quick completion of construction. This 
is because the need for good quality and smooth material helps to determine the success of a building project, with 
the use of technology through precast being a problem-solving process. Therefore, this study aims to analyze the 
patterns by which inventory procurement predictions produce precasts with good quality, using the e-readiness 
framework concept of the neural network through appropriate decision-making processes. It also focuses on 
innovating technological products used in the Indonesian precast industry. The Methodology Neural Network was 
used to produce the best target quality time and precast commodities. The result indicated two outputs from 2 
neural network models, using five similar input-value variables. Based on the Adaline neural network, the outputs 
were observed as the highest sales-cost predictions for precast products, which often occurred in 1, 5, 6 and 9 
months. Besides this, production activities were also normally operated at level (1), with profit optimization being 
highly considered before months 1, 5, 6 and 9. For the LVQ neural network, the result was a predictive 
classification of class intensity levels, where fast decision-making processes occurred in months 1, 6 and 9. Cost 
optimization was also carried out by ordering raw materials several months in advance, considering the trend in 
material prices and logistics.   

 
Keywords: Raw material, Neural network, Concrete, Precast 

 
 

1. INTRODUCTION 
 

Concrete is formed by raw material components, 
namely cement, aggregates, sand and admixture [1].  
In its development, concrete technology continues to 
innovate and develop. The use of cast concrete in 
place is common, along with its development 
concrete can be cast elsewhere and when it is formed 
it is used in buildings according to their needs or what 
is better known as precast. According to the 
2847:2019 standard [2], precast concrete is a 
structural concrete element that is cast elsewhere 
from its final position in the structure. In other words, 
precast is a concrete component with reinforcement 
that has been printed in a factory and the assembly is 
carried out at the project site. The use of precast 
concrete can reduce the duration of work 3,94% - 
72,97%, the number of workers 51,33% - 87,45%, 
budget plan 3,05% - 37,57%, the use of wood as 
formwork and scaffolding 90,11% -98,81% [3].  
Examples of using precast are spunpile used for high-
rise building foundations, girders for bridges, facades 
used for building walls, lining used for retaining walls 
in rivers. U-Ditch is used for drainage or irrigation 
channels and Box Culvert is used in waterway 
construction, so it is often refered to as a sewer.  

Currently, precast is needed to speed up the 
execution time, so it doesn’t affect the weather 
factors, this usage is also eco-friendly. 

 

 
 
Fig. 1 Precast Product Spunpile 
 
      The figure above is an example of a precast 
product, namely a spunpile which is used as a 
foundation for high-rise buildings. There is also a 
spunpile type that is in a box form depending on the 
designation needed in a construction project. 

The Indonesian government has been undergoing 
massive infrastructural development since 2019, with 
an effect observed in the significant increase in 
precast product demand in 2022. Based on these data, 
precast production was carried out by 76 registered 
factories, which were distributed throughout the 
country. Each factory had an increase in production, 
which varied between 210,000-500,000 tons yearly, 
to serve the increasing demand. This indicated that 
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the average monthly production of each organization 
needs to reach 45,000 tons.  

In Indonesia, efficiency is often measured from a 
cost and time perspective, showing that the use of 
precast concrete is more efficient than conventional 
methods [4]. Although this utilization is more 
efficient, technology-based precast supply chain 
parameters still need to become effective support. 
This supply chain is classified into various phases, 
namely planning, designing, manufacturing, 
transportation, installation, and construction. To 
achieve an integrated construction, the parties in these 
phases need to have efficient communication and 
effective collaboration in providing accurate and up-
to-date information. According to the governmental 
data, the main problems in the precast supply chain 
phases began from the following, (1) poor planning, 
(2) ineffective communication between designers and 
manufacturers, (3) incompetent employees/workers, 
(4) damage to raw materials, and (5) large sizes and 
heavy precast components and coordination in the 
bad project site. Besides these conditions, the key 
issues also contributed to negative consequences on 
the efficiency, productivity and effectiveness of 
precast delivery [5]. After procurement, the damages 
to raw materials are often found to affect the quality 
of the process and precast production during the 
inventory phase (initial stage). This explains that the 
procurement division needs to be able to provide the 
certainty of scheduling receipts for efficient project 
completion when ordering raw materials. Irrespective 
of these conditions, practical raw material orders and 
assembly time have still not been highly considered, 
leading to the probable effects and implications of 
excess inventory occurrences and additional project-
financing increment, respectively. Therefore, a 
methodology should be determined for the effective, 
efficient, and economical control of precast plants’ 
inventory management [6]. 

The utilization of technology has reportedly been 
implemented widely, to support the management of 
raw materials during the inventory processes. This 
was in line with the raw material control for precast 
tunnelling projects in China [7], where many 
businesses were leveraging historical sales and 
demand data to implement intelligent inventory 
management systems. Demand forecasting involves 
predicting/ensuring the consumption/collection of 
precast raw materials. This plays an important role in 
the area of inventory control and supply chain, due to 
enabling production and distribution planning. It is 
also conditioned to reduce raw material delivery 
times and optimize decisions on the supply chain [8]. 
This is to help the developers and operators of 
inventory management systems in improving 
efficiency, maximizing productivity, and minimizing 
material losses [9]. 

Many studies have also evaluated smart inventory 
implementation, namely the dynamic brick-and-

mortar supply chain analysis. This evaluated the 
benefits of implementing smart applications and 
systems to improve Vendor Managed Inventory 
(VMI) efficiency. In the supply chain mechanism, the 
manufacturer configured the production level and 
replenished the inventory at the retailer's store, where 
prices were set up to affect sales and inventory. In this 
condition, the company also shared the revenue and 
inventory costs through an agreement. This condition 
was very dynamic when inventory increased and 
decreased at production and sales levels respectively, 
with periodical variations observed according to 
several stochastic errors [10]. In this case, the need 
for accurate predictions led to a more effective and 
cheap supply chain, as well as allowed companies to 
provide quality, quantity, periodical, and low-
production cost products [11]. Many studies also used 
other machine learning approaches to map prediction 
patterns, such as fuzzy subtractive clustering 
[12].Therefore, this study aims to analyze the patterns 
by which inventory procurement predictions produce 
precast products with good quality, using the e-
readiness framework concept of the neural network 
method through appropriate decision-making 
processes. In this condition, prediction modelling was 
prepared as part of the application of e-readiness in 
raw material management. The pattern of obtaining 
these materials was also used as the best test data, to 
assess the management model in smart inventory. 

 
2. RESEARCH SIGNIFICANCE 

 
Integration and utilization in the field of precast 

manufacturing is still not widely found. Integration 
requires redefining for adjustments in corporate 
culture in precast companies. The redefinition was 
carried out for reasons of planning the preparation of 
raw materials as precast making materials. Optimal 
material ordering must match the project schedule, 
raw material repository and technology. Order 
optimization is carried out with strict monitoring 
supported by customized e-readiness technology 
selection. Customize technology selection by 
implementing 2 neural network models namely; 
adaptive linear (Adaline) and linear vector 
quantization (LVQ) are still not common. 

 
3. LITERATURE REVIEW  
 
3.1 E-Readiness 
 

Technology Readiness Index (TRI) 1.0 is 
constructed based on four-dimensional aspects, 
namely Optimism, Innovation, Discomfort, and 
Insecurity [13], as shown in Fig. 1. This is often 
applied to a company with the Strategic Alignment 
Maturity Model (SAMM), to determine the 
utilization level of information systems in all business 
operations [14]. It is also one of the innovative 
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references used in managing highly efficient logistics. 
In addition, TRI is related to the Global 
Competitiveness and Logistics Performance Indexes 
(GCI & LPI), as well as other similar supportive 
dimensions. 

 
Fig. 2 E-Readiness Technology   
 

In precast manufacturing companies, technology 
is also used in raw material management by arranging 
and using a very suitable procedural schedule and 
method, respectively. Using linear programming 
methods, Markov models, and genetic algorithms, 
scheduling often emphasizes the management of time 
to handle and obtain raw materials [15]–[17].  

In this condition, a good inventory receipt system 
is needed to provide more value during the prediction 
process, where efficient and periodical systematic 
performance is a function of operational activities. 
This helps to reduce time consumption in determining 
optimal operations in various parameters [18]. 
Additionally, process quality problems and 
production cost efficiency are adequately maintained 
[1], [19], [20]. 
 
3.2 Neural Network  

 
The amount of inventory is often related to the 

company's profit and the entire supply chain's 
survival. This indicates that prediction processes need 
to increase the company's ability to prevent risks, 
improve profits, and reduce losses during the 
acquisition of inventory, using the backpropagation 
neural network (BP) method [21], [22]. Some reports 
were also observed based on the development of 
technology readiness, such as [23], [24]. This 
emphasized determining the optimization value of 
material handling, using a neural network with 2 
algorithm methods, namely ADALINE (Adaptive 
Lenear Neuron) and LVQ (Linear Vector 
Quantization). ADALINE network functions to 
perform cost projection. LVQ model function led to 
the prediction of cost-benefit into 3 categorical levels, 
namely high, medium, and low demand, as shown in 
figure 3. 

 

 
Fig. 3 Neural Network Model based on E Readiness 
 

Based on the figure above, even though it uses 2 
(two) models, namely the adaptive linear model and 
Linear vector quantization, both have the same input. 
Inputs come from Raw material receiving, vendor 
level and regional and enterprise technology 
infrastructure.  
 
3.3 Adaline 
 

ADALINE (Adaptive Linear Neuron or later 
Adaptive Linear Element) is an early single-layer 
artificial neural network, which is implemented as an 
algorithm to predict outputs with an automatic 
controller. Although the accuracy obtained is not 
satisfactory, the value still changes and becomes 
highly precise during more data analyses [25]. In the 
following equation, an input vector (K) is observed 
with the pattern. 
 Xk=[x0, x1k, x2k, ..., xnk]T  (1)                               
Where Xk = the components of the weights and 
coefficients. Moreover, a weight vector (Wk) is 
observed in the Eq. (2) as follows, 
Wk = [wx0, w1k, w2k, ..., wnk]T                                    (2), 
where K

T
KK XWy =  . 

Output θ+∑
=

= kWkX
n

k
yk

1
 

Adaptive learning rule  
Learning is also known as the Least Mean Square 
(LMS), whose rules in this process are observed as 
follows, 
W ← W + Ƞ(d – o)x                                         (3) 
 
 
3.4 Linear Vector Equations Quantization (LVQ) 
Model 
 

This is one of the widely used ANN models 
(Artificial Neural Network), which emphasizes the 
prototype of a supervised learning classification 
algorithm and its network. These are trained through 
a competitive method similar to the Self-Organizing 
Map. The clustering technique is also used as a 
classifier to evaluate the deviations in the data sample 
through a random or specific density. This shows that 
performance remains the same with almost all 

Optimism Innovativeness

Discomfort Insecurity

Technology Readiness

Linear Vector 
Quantization (LVQ) 

Model

Adaptive Linear (Adaline) 
Model

In
pu

t

Class 

Cost



International Journal of GEOMATE, Feb., 2023, Vol.24, Issue 102, pp.10-17 

13 
 

combinations of training and testing [26]. Based on 
the following formula, learning is conducted by 
calculating the euclidian distance, 

),(min),( kk wxdwxd
→→→→

=                                  (4) 
Wk  (weight improvement) is also used to determine 
the weight (w) with the smallest distance value (d) as 
follows, 

).( kkk wxww
→→→→

−+← η , when cm =/≠ y, it is close 
to each other or part of the set, respectively. 

 
 

4. METHODOLOGY 
 
Research scenarios or methodologies must be 

carried out in order to achieve valid and accurate 
research results. In general, this research was 
conducted according to the methodology as shown in 
figure 4 below. Input from the system is in the form 
of monitoring data from e-readiness technology, 
processes and neural network learning carried out to 
achieve cost results and decision classes.  

 
Readiness 
technology ExternalInternal

Fiture 
Extraction

Define target data
Normalized Data
Define test dataRaw Material 

Supply pattern
Precast selling 

pattern

Adaptive Linear 
Neural Network

Linear Vector Quantization  
Neural Network

Class | CategorizationCost  
 
Fig. 4 Study Methodology 

 
The e-readiness technology emphasized the 

following factors, (1) security, (2) technical issues, 
(3) software reliability, (4) digital operations for 
internet usage, and (5) technical skill utilization [27]. 
The concept of this technical influence also originated 
from internal and external organizations, as shown in 
figure 4. Feature Extraction serves to normalize raw 
material pattern data, precast selling pattern. In 
addition to also performing categories of data 
functions and training both neural network 
architecture models in used. Test data is used as 
inputs and targets based on monthly data patterns that 
occur. Internal data e readiness is an advantage to be 
achieved by making improvements by improving the 
quality and quantity of company resources. External 
e readiness is intended to look at competing 
companies that have the same core business and 
available infrastructure and can support company 
performance. 

 

Relative 
Advantage Market Foces E 

readiness

E readiness Internal

Top Management 
Beliefs

Technology 
Resources

Supporting Industri E 
Readiness

E Business 
Adoption

Control Variable
- Size
- Age
- Ownership
- Industry Type

E readiness External

 
 

Fig. 5 The concept of e-readiness influence 
 

        Based on the external conditions, e-readiness 
emphasized many factors regarding the case 
perspective of each corporation in its respective 
business field. In this study, these factors were 
limited, including the IT technology infrastructure 
supporting the precast industry and the vendor market 
for raw materials. Meanwhile, the internal conditions 
of this technology focused on related technical 
improvements, using neural network methods for 
prediction processes.  
 

4.1 Feature Extraction 
 
The internal data sources were the direct 

measurement of the goods’ receipts, regarding the 
yearly production of raw materials at precast 
organizations. In this condition, the raw material 
parameters included cement, sand, and aggregate. In 
preparation for the precast products, a value 
extraction was also observed for the contributions of 
the materials and costs, as shown in figure 6. This 
showed that the cement and aggregate costs and 
materials were the largest/lowest and smallest/highest 
contributions, respectively. 

Sand
39%

Split
0%

Cement
61%

COST PRECAST PRODUCTION  

Sand
70%

Split
0,04%

Cement
30%

MATERIAL CONTRIBUTION

  

  

( b )

Material Contribution

Aggregate
0,04%

 

 

Cement 
30%

regate
44% Sand 

70%

 
 

Fig. 6 Cost Contribution (a)  production (m3) and 
material contribution (b) precast product 
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The second parameter focused on the monthly-
supply behaviour pattern of each raw material for a 
year, as shown in figure 7. 
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Fig. 7  Annual supply pattern of precast raw materials 
 

Based on the pattern that occurs as can be seen in 
Figure 7, it can be seen that the pattern of each raw 
material (cement, aggregate and sand) has the same 
correlation even though it differs in the volume of 
orders. The data comes from ordering raw materials 
for a year (12 months). The highest order is cement, 
aggregate then sand. 

 

4.2 Data Test 
 

This emphasized the data of sand, aggregate and 
cement, which were mixed based on the best quality 
standard of Indonesian concrete category K 500-K 
600. These data were obtained according to the order 
for 12 months, as shown in table 1. 
 
Table 1 Precast raw material cost 

 
No Materials Cost IDR (m3) 
1 Sand 242,000 
2 Aggregate 200,000 
3 Cement 715,000 

 
4.3 Normalized Data 

 
The nominal unit of numeric data was normalized 

to facilitate data processing in the neural network 
architecture. This indicated that normalization was 
carried out by mapping into numbers between 0 and 
1, as shown in the following formula, 

minmax

min

XX
XX

X Original
Map −

−
=                                      (4)                 

 Where :  
Xmap = Normalization Value 
X Original = Original Value 
X max = Maksimum Value 
X Min = Minimum Value 
 

In 2021, the normalization of input variables were 
also carried out on the price of raw materials, 

frequency of intermediaries, and volume of  
transaction costs. Moreover, the target data originated 
from the average total sales of precast products in the 
same year. 

 
4.4 Target Data  

 
The target data contained three vectors, namely 

the minimum, maximum, and median sales values of 
the total cost, as shown in figure 8. 
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Fig. 8 Total precast unit cost for the year. 
 
Based on figure 8, the optimization patterns of the 

raw material supply and sales profits were observed 
when the production target need to achieve 45,000 
tons monthly with a minimum unit cost of IDR800 
million. 
 
5. DISCUSSION 
 
     Based on the external conditions, the system input 
parameters included the readiness of IT technology 
infrastructure, which supported the precast industry 
and market vendors providing raw materials. In this 
analysis, the final output was a value within a 
specified range. Meanwhile, the internal input factors 
included the monthly frequency of raw material 
supplies in a year (Tons). Table 2 shows the input and 
target variables of this analysis. 

 
Table 2 Input Parameter Identification and Prediction 
 

No Input 
Parameter 

Prediction Parameter  
Adaline  LVQ 

1. IT Readiness 
Infrastructure 

Monthly 
Precast 
Selling 
Patterns 

Decision 
Classification 

Level 

2. Level Market 
Vendor 

3. Cement 
Contributions 

(monthly) 
4. Aggregate 

Contributions 
(monthly) 

5. Sand 
Contributions 

(monthly) 
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5.1 Architecture Neural Network Adaline  
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Fig. 9 Adaline Architecture 
 

 
Based on figure 9, five defined input values were 

observed, indicating a linear activation function 
between 0 and 1.  The figure describes the neural 
network architecture of the adaline model. This 
model uses a single layer of neurons and will carry 
out the learning process to achieve optimal 
architectural weights. The optimal architectural 
weight will produce a number that can be calibrated 
against the precast sales data pattern. 
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Xn
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Fig. 10 Linear Vector Quantization Architecture 
 

In figure 10 five defined input values were also 
observed, where a linear classification produced 3 
cluster categories. The figure explains the neural 
network architecture of the Linear vector quantization 
model. This model uses competitive layer and linear 
layer neurons as its output. This architecture will 
carry out the learning process to achieve optimal 
architectural weight. Optimal architectural weight 
will result in a class classification of precast sales data 
patterns. 

 
 5.2  Simulation Result 

 
The final stage of the process in a neural network 

model is to produce the final result. Simulations are 
carried out to measure whether the model is 
functioning as expected. The input parameters, the 
weights of the neural network learning outcomes to 
the output parameters will be tested according to their 
respective functions on the results. The model is 
declared good if several data scenarios until the 
output have been achieved. 

Scenarios from the data will be tested according 
of the upper limit value and the lower limit value of 
the data pattern. 
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Fig. 11 Adaline Method simulation results 
 

According to figure 11, the pattern of obtaining 
raw materials for precast products fluctuated based on 
the test data from 2021, through the Adaline method 
of learning for a year. In this condition, the lowest 
orders were in the 3rd, 8th, 11th, and 12th months 
when 5 parameters were inputted into this method. 
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Fig. 12 LVQ Method Simulation Result 

 
Based on figure 12, the pattern of obtaining raw 

materials for precast products also fluctuated 
regarding the test data from 2021, through the LVQ 
method learning for a year. This proved that the 
highest classes and the best values occurred in the 1st, 
6th, and 9th months when 5 parameters were inputted 
into this method, with the lowest orders observed on 
the 2nd, 3rd, 4th, 7th, 8th, 10th, 11th, and 12th 
periods. In the 5th month, the values obtained were 
also found not to be very high or low. These actions 
emphasized the option of maintaining existing raw 
materials or placing orders regarding the increment of 
the previous month. 

 
Table 3 Class and Cost Relation 

 
No. Month Classes Cost (IDR) 
1 Jan 3  3,644,810 
2 Feb 1 1,829,060 
3 Mar 1 804,661  
4 Apr 1  1,724,870  
5 May 2  2,097,578  
6 Jun 3  2,872,875  
7 Jul 1  2,370,019  
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8 Aug 1  1,170,018  
9 Sep 3  2,464,231  
10 Oct 1  2,010,972  
11 Nov 1  895,467  
12 Dec 1  942,555  

 
 According to table 3, the second and third months 
had different advantages, although they were in class 
(1). This was in line with the eighth and eleventh 
months. The midpoint was also observed in class (2), 
which occurred in the 5th month. However, the 1st, 
6th, and 9th months exhibited quite a large amount of 
transactions, leading to significant effects on the 
order of raw materials and logistics financing 
considerations.  
 
6. CONCLUSION 
 

Based on these results, cost optimization was 
conducted by accepting and creating new orders when 
the conditions were found in class (2). This action 
was often carried out by observing the trend of the 
previous month. Due to the high-order rate, the 
classes also showed that the level of operations need 
be accelerated and periodically limited when the 
conditions were categorized in class (3). For class (2), 
the order for raw materials was only performed by 
observing the Adaline method simulation, since a 
tendency was found for the market to absorb precast 
products in the following month. Furthermore, the 
application of the neural network method was 
appropriately implemented when supported by 
external e-readiness factors, including the which 
include infrastructure preparedness and many 
material vendor options. The implementation of this 
conceptual technology also used 2 neural network 
models for precast products. This involved the 
processing and production of similar input values and 
different decision model simulation, respectively. 
Irrespective of these differences, a strong correlation 
was still observed with the time efficiency of the 
decision-making process. Therefore, bother LVQ and 
Adaline contributed 50% to this decision approach.  
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