
Text Book  
Deteksi Corona Discharge Dengan 

Menggunakan Analisa Emisi Acoustic 
Pada Kubikel Medium-Voltage  

 
 
 
 
 
 
 
 

Disusun Oleh: 

Syarif Hidayat, S.Si, MT 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



I. Introduction 

In electrical equipment such as MV switchboards, GIS, and equipment related to high voltage, 

partial discharges (PD) and corona discharge (CD) may occur, which are discharge phenomena in 

the insulating material. These discharges affect only a tiny portion of the dielectric or gas of the 

insulation [1]. PD can occur due to defects in the insulation of electrical equipment, failures in 

electrical cabinets are primarily caused by this defect [2]. Insulation will slowly deteriorate due to 

PD, affecting the electrical equipment’s regular operation. Therefore, both the internal insulation 

condition of the electrical system and the detection of insulation problems are possible with accurate 

and reliable PD [3]. PD and CD are both electrical phenomena that involve the release of electrical 

energy in insulating materials. While they share similarities, they are distinct phenomena with 

different characteristics. 

Pulses of current, electromagnetic, acoustic emission, light emission, and other phenomena 

associated with PD can be employed for its identification [4]. The technique of pulse current (PCM) 

[5, 6], ultra-high-frequency (UHF) method [7–9], ultrasonic acoustic wave (UAW) method [10], 

optical detection [11], and transient earth voltage (TEV) method 

[12] constitute the primary methods for detecting PD and CD in use today. 

The primary cause of the development of corona discharge conditions (CD) is illustrated in Fig. 

1. Based on numerous observed instances of corona, three main factors contribute to its 

development: factors of geometrics, spatial, and material contamination [13]. 

First, geometric factors include sharp edges on conductors, multiple connections, and 

vulnerable components in switchgear cabinets. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 1 The main cause of the development of the corona discharge condition 



 

 

Figure 2 Corona tracks close to bus bars 

 

 

 
 

Figure 3 Corona discharge formed because of contamination on ceramic bushing 
 

Secondly, spatial factors involve small air spaces between conductors, insulation boards, and 

switchgear cabinet com- ponents. This may arise from various conditions such as the conductor is 

bonded, the conductor contacts the insulator, the cable contacts the grounded surface, and the bus 

bar near the fiber-resin support, as shown in Fig. 2. 

Finally, dust and other particulate contamination on conductors and insulators contributes to the 

occurrence of corona, as depicted in Fig. 3. 

While the detectors installed inside the apparatus may exhibit relatively high sensitivity, they can 

potentially lead to new insulating issues. When assessing the insulation of high- voltage equipment, 

each method may have its benefits and drawbacks. However, certain detection techniques may 

prove more effective for specific high-voltage equipment than others. 

The sensors proposed in this article are crafted using the acoustic wave approach, a more 

sustainable process that avoids additional insulation issues while maintaining excel- lent 

sensitivity, in contrast to the strategies mentioned above [2, 14–16]. Acoustic detection is 

commonly employed for GIS flaw diagnostics in factory tests and everyday usage. Several uses 

of using acoustic methods, but not limited to [17–21]: (a) are nondestructive and noninvasive; (b) 



strong against electromagnetic interference; (c) free from influence from external capacitors, 

ensuring that the sensitivity of the measurement is not affected by the capacitance of the object 

being tested; etc. 

Numerous monitoring methods for PD or CD have been recently discovered and proposed. It is 

essential to provide examples of the shortcomings of these methods and elucidate their functionality. 

Several review articles in the literature delve into these methods, presenting trends and the state 

of the art in specific areas [22–24]. 

This work aims to analyze recent advancements and trends in CD detection, particularly in 

medium-voltage cubicles, and provide a diagnostic overview. This review focuses on the causes of 

cubicle damage, elucidates methods of CD detection, clarifies various techniques for identifying 

isolation defects, and establishes a theoretical foundation for current severity evaluation 

approaches, concentrating on publications from the last ten years. In addition to highlighting 

relevant gaps, this review presents a taxonomy for some of the tactics used in literature, serving 

as a starting point for additional study on the subject. 
 

II. Discharge in Medium-Voltage Cubicles 

A local electric voltage is produced by PD, an electrical disturbance in the insulator that does not 

bridge the electrodes. This process decreases high-voltage equipment’s insulation life and slows 

insulation degradation [25]. PD occurs when an electric field exceeds the threshold value and 

partially breaks down the surrounding medium [26]. If PD behaves transiently, a pulsed current 

with a nanosecond to microsecond duration is present. Complete damage typically results in 

insulators losing all information about the PD type [27]. Therefore, constant monitoring is 

necessary to address the issue at stages [28, 29]. The isolation conditions can be determined using 

the PD pattern of each type of defect, each having unique degradation characteristics [30]. 

Corona activity can be monitored through various methods. The most effective approach is to 

observe the light produced by the corona or to listen to its sound. Corona activity is visible to the 

naked eye only in very dark conditions. Another method for monitoring corona is by listening to 

the sound it generates [31]. The noise caused by corona can be described as a hissing sound, often 

audible to the human ear. In an air gap with a nonuniform field, electrical failure begins with the 

emergence of the initial voltage (inception voltage), marking the initiation of the corona 

occurrence mechanism. Corona discharge occurs when two electrodes (conductors) are positioned 

with sufficient gaps and under satisfactory environmental conditions with nonuniform terrain, and 

a sufficiently high voltage is applied. A distinctive characteristic of corona emergence is that the 

electrode appears luminous, emitting noise and the smell of ozone (O3). With continuous voltage 

increase, complete electrical failure occurs in a flash jump, where the air between the electrodes 

becomes conductive, allowing the flow of electric current [32]. 

Electric tree planting can occur in areas with significant electric fields in the dielectric material 

due to flaws such as gas cavities, sharp electrode edges, or metal particles. Ultra- violet light and 

ozone gas are by-products of voids beneath high electrical voltage, leading to the decomposition 

of the insulator and the creation of emptiness. Repeated cavity generation results in weak points and 

the formation of an electric tree, ultimately causing destruction. Additionally, due to pollution 

generating flashovers on the surface and high electric field voltage, an electric tree can form on 



the dielectric sur- face. An insulator (ceramics, silica, etc.) is present between the electrode pairs, 

usually causing the removal of the dielectric barrier [33]. 

Electrical equipment can experience PD, which is the occurrence of discharge in an insulating 

medium under high voltage (HV). This discharge does not result in a complete breakdown of the 

gas or dielectric insulation; instead, it occurs locally. Insulation flaws in electrical equipment 

can lead to PD, a primary factor in GIS failure. PD causes a gradual reduction in insulation, which 

interferes with the regular operation of electrical equipment. Therefore, the internal isolation status 

of power equipment may be evaluated, and insulation problems can be detected using accurate and 

trust- worthy PD detection methods [34]. 

Techniques for measuring PD are based on insulation systems’ various physical and chemical 

processes. To better understand the phenomenon of void discharge, research was conducted for 

ten years beginning in the 1960s, when this monitoring method was initiated [35]. Another 

significant advancement was the satisfactory progress made in the late 1970s toward various PD 

processes such as treeing, flashover, sparks, avalanche, and streamer [36–38]. PD causes the 

following physical events in a power transformer isolation system: (a) Mechanical vibrations 

appear, resulting in ultrasonic acoustic waves. (b) The emission of electromagnetic waves at 

extremely high frequencies. (c) The release of nitrogen and ozone is due to chemical events. (d) The 

generation of heat and light radiation [39]. 

To develop automatic PD detection, the PD monitoring system has recently been expanded to 

include data analysis techniques and sensor technologies [40]. A typical PD surveillance system 

consists of a PD unit for signal collection feature extraction and a unit for data analysis. Sensors in 

the PD signal-gathering unit can identify physical activities that release various types of energy. 

There are two distinct pattern graphs in the PD signal: PD with a time-resolved partial discharge 

(TRPD) and PD with phase-resolved partial discharge (PRPD) [41]. It can be observed that "q" is 

a parameter in the PRPD, and "t" is a time parameter in the wave graph, while the q–t waveform 

is represented in the TRPD. This characteristic is also utilized in PD data processing, which 

typically employs more innovative pattern recognition methods and uses fuzzy intelligent systems 

to distinguish between PD and noise or to identify the source of PD [42]. 
 

III. Partial discharge and corona discharge detection methods 

PD can result in a variety of physical events that can be observed: The phenomena may manifest 

as the presence of gases or changes in the chemical composition [43–47], optical light [48–52], 

current pulse [53–57], electromagnetic wave [58–62], and acoustic emissions [63–67] which is 

illustrated in Fig. 4. Electrical and nonelectrical approaches are two primary groups of physical 

phenomena that allow for the detection and quantification of PD. There are several methods and 

sensors, as well as disadvantages and advantages, in PD detection presented in Table 1. 
 



 

Figure 4 Partial discharge and corona discharge detection methods 



 

 

 

 

 

 

 

 

 

 

 

 



3.1 Chemical and gas presence method 
 

PD occurs in SF6 gas, some of the SF6 molecules decompose, reacting with impurities in SF6, 

namely H2O and O2. Various chemical products are formed, including SOF4, SOF2, SO2F4, SF4, 

SO2, CF4, CO2, HF, etc. In GIS, decomposition products are indicators for PD detection. 

Chemical method detection is almost unaffected by noise and electromagnetic interference [43–

47]. In Fig. 5. The electrodes are high voltage, and the breakdown of SF6 is carried out due to corona 

discharge [68]. 

Two main chemical testing procedures are used: dissolved gas analysis (DGA) and high-

performance liquid chromatography (HPLC). The DGA test identifies the level of dissolved gas 

released from the transformer during PD (such as hydro- gen and methane). However, there is no 

standard value for the DGA test results and the concentration of dissolved gas in the oil, which 

correlates with damage to the transformer [23]. Figure 6 illustrates the chemical PD detection 

technique. 
 

 

 

 

Figure 5 Schematic diagram of SF6 decomposition experiments (unit: millimeter) [68] 
 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Method of Chemical PD Detection [69] 
 

3.2 Optical method 
 

PD activity detection in power transformer oil can utilize supporting tools with an optical 

approach. Mach–Zehnder interferometry (MZI), Fabry–Perot interferometer (EFPI), and Bragg 

fiber gratings (FBG) are examples of typical PD optical detection sensors [22]. Figure 7 illustrates 

the essential operation of FBG. 

In 2013, an unconventional method of measuring PD in power transformers using fluorescence 

sensors was proven reliable, shown in Fig. 8. However, studies on the ability of fluorescent sensors 

to detect PD in transformer oil produced dubious results with several flaws. The correlation 

between the activity of photons, PD via optical signals, and PD charge restrictions in oil is still being 

investigated in experiments. Measurements for power transformer oil became achievable in 2014 

[22]. However, this is particularly challenging for ancient transformer oils. 

In addition to the optical approaches mentioned above, partial discharge (PD) detection can also 

be done using visual imaging techniques with cameras. This method utilizes cam- eras that are 

sensitive to certain frequencies of light emissions produced by PD activity. The use of digital 

cameras has proven effective in detecting PD in various electrical equipment [71]. This technique 

offers the advantage of being able to monitor PD in real-time and non-invasively. However, 

environmental conditions, such as lighting, temperature, and type of oil material, can affect the 

accuracy of detection. The implementation of imaging technology in detecting PD is still 

developing to provide a more accurate and reliable solution in monitoring the performance of high-

voltage electrical equipment. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The operation of fiber Bragg grating sensors [22] 

 

 

Figure 8. Optical PD detection method [70] 

 

3.3   Electrical method 
 

In the electrical detection method, pulses are utilized to form a signal using the electric detection 

method. The test zone is directly connected to the built circuit, enabling the detection of the PD-

indicating pulse of current [72]. Two international commissions that support this method are the 

International Electrotechnical Commission (IEC) and the Institute of Electrical and Electronics 

Engineers (IEEE) [73]. Figure 9a, b [1, 74] illustrates a general electrical detection technique for 

checking the state of the power transformer. Although online testing is susceptible to electromagnetic 

interference but sufficient for offline testing, further development of methods to identify PD activity 

is required [75, 76]. 

The key benefits of the electrical PD detection approach are its wide frequency range, excellent 

sensitivity, and ability to locate the PD cause. However, this method also has certain drawbacks, 

including the inability to conduct on-site testing, susceptibility to electromagnetic interference 

(EMI), and the presence of significant ambient noise [69, 77]. 



In Fig. 10, this circuit has several advantages when viewed from the perspective of external 

interference. However, calibration is somewhat challenging, involving balancing and 

synchronizing multiple devices. 

Figure 11 illustrates that when high-voltage (HV) equipment in the form of a transformer is the 

part being tested for PD, the level of inductance complicates measurement, making it more 

complex, and the internal circuit is challenging. Connecting the transformer to the measuring 

equipment, i.e., via a capacitive bypass bushing, can solve this problem. 
 

 

 

 

Figure. 9 a IEC 60270-based indirect measurement circuit using external coupling capacitor 

b Capacitor through bushing taps for coupling [1] 

 

 

 

 

 

 

 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Basic circuit of the electrical PD detection according to IEC 60270 [1] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 PD detection circuit by the capacitive bypass of the bushing [1] 
 

 

 

 

 

 

 

 

 



3.4  Electromagnetic (UHF) method 
 

In some early studies, electromagnetic (EM) techniques demonstrated a linear correlation 

between the PD charge and the potential signal source at a specific PD position [78]. Conic, spiral, 

and Vivaldi antennas can be used as sensors in the detection of ultra-high-frequency (UHF) 

electromagnetic waves [79, 80]. UHF sensors are currently a notable research area being developed 

due to their uses, such as being unaffected by low-frequency signals, experiencing insignificant noise 

effects from the internal transformer construction through denoising and white noise removal 

techniques, and encountering corona-free pulse interference [81, 82]. 

Figure 12 illustrates a power transformer’s circuit schematic, showing the effects of several PD 

types on its UHF calibration [83]. Various types of current transformers, including Rogowski 

coils, HFCT, and RFCT, have been extensively studied as sensors for PD detection [84–87]. 

This technique relies on identifying electromagnetic waves produced in transformers during PD 

incidents. Typically, PD in the transformer produces electromagnetic wave signals between 300 

MHz and 3 GHz [88]. 

A diagram of the PD detection method on UHF is shown in Fig. 13. Here, an antenna sensor 

captures EM waves generated by the PD event on the transformer. The signals of PD must be 

amplified to a frequency range that the UHF sensor can detect because it is usually too weak to be 

detected by the sensor. Between the measurement system and the sensor is a connection to the 

amplifier. A filter is also attached between the sensor and the measuring apparatus to reduce 

outside noise [81]. This produces a PD electromagnetic signal. 

Excellent ambient EMI sensitivity and immunity are additional features of this method, which 

are essential for on-site monitoring [89]. The fundamental problem with this approach is the lack 

of calibration procedures and the sensor’s high sensitivity to electrical noise from radios, 

televisions, and other sources when placed externally [90, 91]. 
 

 

 

Figure 12 Circuit drawing for analyzing the PD effect [83] 
 



 

Figure 13 The UHF PD detection method block diagram [91] 
 

3.5 Acoustic Emission Method 
 

The transformer’s PD typically produces an auditory emission signal with a frequency range of 

20 kHz to 1 MHz [92]. Acoustic sensors like piezoelectric, fiber optic, etc., can detect these acoustic 

waves as they travel through the trans- former. The transformer tank can have this sensor placed 

either inside or outside of it. The speed of an acoustic sound wave is affected by the medium 

through which it passes. Echoes and signal reflections on the surface of the material also influence 

it. Therefore, the characteristics of the material are tested nondestructively by analyzing how these 

waves propagate through the supporting equipment of the trans- former [70, 93]. Figure 14 shows 

the acoustic PD detection process for transformers. 

 
 

 

 

 

 

 

 

 

 

Figure 14 Oil-filled transformer acoustic PD detection method [69] 
 

The acoustic emission method can determine the PD source’s position compared to electrical 

and chemical methods. This method is also robust against the effect of EMI [69, 94]. For instance, 

the iron core and windings of a transformer cause wavefronts to be reflected and refracted as an 

acoustic pressure wave travel through them. The signal strength is diminished by the transformer’s 

internal multipath sound wave propagation [93]. This technology has lower sensitivity than 

electrical engineering because of wave propagation reflections and echoes, resulting in a feeble 

received signal. The sensor must be highly responsive to even the tiniest fluctuations in signal 

amplitude to record PD [69]. 

 

 



3.6 Combinational Method 
 

A combination of AE and DGA methods has been attempted to find the disturbance position 

[95]. Using DGA and AE techniques together is like photo-acoustic spectroscopy (PAS). In Fig. 

15, the use of PAS is shown [96]. Ultrasonic and UHF sensors have been combined in various 

ways to achieve good results in detecting discharge sources and can also utilize a combination of 

EM and acoustic techniques [97]. By comparing the AE sensor signal with the signal from the EE 

during the reference time of the discharge, it is possible to obtain a better result, ensuring that the 

detected signal is not noise in an inventive form [98]. 

A combination of several methods has been used to identify discharges, which are employed to 

determine the overall insulation failure of a transformer [99]. Combining AE and optical 

techniques ensures that the reference signal originates from the discharge source while using the 

other sensor as the AE sensor to determine the location of the PD [100]. A comprehensive 

comparison of the various discharge detection methods applied is presented in Table 1. 
 

 

Figure 15 Spectroscopy-based photo-acoustic DGA system [96] 
 

IV. Diagnostic CD on high-voltage equipment 

CD diagnostics is an effective way to categorize defects in high-voltage booths and switch gear 

equipment. The primary goals of CD diagnosis are to distinguish between different types of defects 

and to pinpoint the CD’s underlying etiology. The diagnosis of CD is challenging because cubicle 

switchgear has a very intricate insulation scheme with nearly inaccessible internal components. Due 

to its tiny structure, online testing was only done on switchgear and cubicle terminals. 

Sophisticated testing equipment and knowledgeable staff are required to make a correct diagnosis. 

The IEC 60270 standard states that electrical discharge measurement has excessive noise due to 

sensitivity limitations [101]. The cubicle-CD switchgear emits EM waves in the same frequency 

range as the UHF technique, with a high EM frequency range of 300 to 3000 MHz. Due to the 

environment’s EM resistance, installation of the UHF sensor in the cubicle switchgear is possible 

even while it is in use and still allows for proper CD signal recognition. A piezoelectric sensor 

positioned on the cubicle-switchgear wall can perform CD localization; now, the acoustic signal 

arrives to record CD activity using EE or EM approaches. The issue is that the high-voltage 

equipment’s intricate structure distorts the acoustic signal. 



The EE discharge measurement system integrates the recharge current to determine the 

apparent charge level (in pC). In contrast, the EM discharge measurement system senses EM 

radiation through the UHF sensor to measure voltage (in mV) [102]. Given that the measurements 

were not made directly, the apparent charge (pC) in the factory acceptance test (FAT) is acceptable 

since the actual discharge value (pC/mV) could not be determined [103]. 

The sensitivity of electrical measurements can be increased by applying coupling or quadrupole 

capacitor effects. For that, it is essential to identify the antenna fac- tor (AF) [104]. The gigahertz 

transverse electromagnetic (GTEM) cell is built with a coaxial cable that extends inside of it, and 

by isolating the device under test from external electromagnetic interference, a known 

electromagnetic field is introduced equipment under test (EUT). The first calibration step is the 

GTEM cell, which reflects the sensor effect. The transformer and UHF antenna are linked to assess 

the calibration sensitivity for measurement competency. A known UHF calibration impulse was 

initially introduced in [104] to calibrate the cable and measuring instrument. The calibrated path 

is then given audio frequency (AF) to add a sensor feature. AF can give various calibration points 

from the calibrator to the antenna in the transformer by inserting a transfer function with a frequency 

dependency specification. The calibration procedure can be sped up by applying the scalar 

correction factor AF, which accurately displays the discharge frequency. Since most power 

transformers were placed more than 40 years ago, online monitoring of trans- formers with 

diagnostics has become essential [105]. 
 

V. Monitoring using acoustic emission method  
 

This study focuses on the description of the acoustic emission method presented in Table 2, 

where numerous discharge detection methods are demonstrated based on acoustic emissions for 

high-voltage equipment. A brief explanation of the measurement method is given in this section. 

AE in power transformers can also occur mechanically due to oil evaporation close to the band, 

an electric arc, and mechanical vibration. The signal resembles a pressure wave and has distinct 

characteristics for different AE sources, such as frequency and amplitude variations [40]. 

The block diagram of the power transformer recording system for detecting the AE signal from 

the discharge is shown in Fig. 16. This system is used when the power trans- former is operating 

normally. For many ultrasonic systems, the wideband piezoelectric transducer is a typical 

transduction component. To detect the AE signal, it is magnetically placed on the transformer tank. 

The AE signal is subsequently amplified, subjected to filtering, and sent to the AE analyzer for 

recording. 

Multiple origins of discharge can be found using the AE approach. A microphone [106, 107], a 

piezoelectric sensor [108], an accelerometer [109], and a fiber optic (FO) sensor [110–112] are 

examples of AE detection devices. Due to the signal’s quick attenuation as it passes through 

different media, the fundamental flaw of the AE approach is the poor localization of the discharge 

source on the transformer winding [113]. 

Complex acoustic emission behavior, low detectable signal strength, and high cost are 

drawbacks of the AE technique. These AE detection methods are outperformed by fiber optic 

sensors due to their higher signal-to-noise ratio and wider auditory field detection (SNR). Multi-

CD sources and noise resulting from the internal high-voltage equipment design can be found 



using denoising and optimization approaches. 

The capacity to identify the discharge pressure wave and distinguish the resulting signal from 

background noise determines how accurate the acoustic discharge location approximation will be. 

To perform accurate discharge source analysis, a high-sensitivity sensor system is needed to detect 

acoustic waves at multiple transformer sites, and a reliable signal processing system is needed to 

correct the interpretation of the results [114]. 

 

 
 

Figure 16 Recording system to detect AE Signals from PD [22] 

 

 



VI. Denoising techniques 

The CD pulses are erratic, transient, and nonperiodic. The excess discharge impulse in the 

acquired CD signal cap- tured by the CD sensor makes processing difficult. Signal processing 

methods must be used to segment the received signal further. Signal processing techniques are 

effective when considering several sources of CD generated at various isolations. Several signal-

denoising algorithms have been widely used, such as artificial neural networks, matched filtering, 

empirical mode decomposition, and other methods [115–118]. The following is a description of 

some popular denoising methods. 
 

6.1 Fast Fourier Transform 
 

The fast Fourier transform (FFT) method computes the discrete Fourier transform (DFT) [119], 

a mathematical technique that converts time-domain signals into their corresponding frequency 

components. While effective for stationary signals with small fluctuations, FFT has limitations in 

dealing with transient, nonperiodic signals such as those associated with partial discharge. The 

discharge signal exhibits erratic and irregular behavior, which is not well suited for FFT’s 

assumptions of signal stability and periodicity. As a result, alternative methods, such as the wavelet 

transform, are often preferred for PD analysis [120]. Despite its limitations, FFT remains useful for 

analyzing frequency components in more stable environments or for initial signal segmentation. 
 

6.2 Wavelet Transform 
 

The wavelet transform (WT) has gained widespread application in PD signal processing due to 

its ability to analyze both stationary and nonstationary signals. Unlike FFT, which transforms the 

entire signal into the frequency domain, the WT decomposes the signal into small wavelets that 

represent localized time–frequency information [121]. The WT is particularly well-suited for PD 

detection because it can isolate high-frequency discharge events while filtering out background 

noise. Its flexibility in time and frequency resolution makes it a powerful tool for real-time 

monitoring of PD activity [122]. This approach allows for better handling of transient, erratic 

signals such as PD by dividing the signal into frequency bands with wavelet coefficients. As a 

result, noise can be reduced more effectively while preserving critical features of the discharge 

signal [118]. 
 

6.3 Ensemble Empirical Mode Decomposition 
 

Ensemble empirical mode decomposition (EEMD) is a refinement of the traditional Empirical 

Mode Decomposition (EMD) method, which aims to extract intrinsic mode functions (IMF) from 

complex signals [117]. The Hilbert–Huang transform (HHT) consists of two parts: Hilbert 

spectrum analysis (HSA) and empirical mode decomposition (EMD). Although HHT is frequently 

employed in error analysis, it has limitations in the EMD technique, where issues occur due to 

problems with mixing modes during the sieving process. EEMD is a more accurate and robust 

noise-assisted analysis technique [123, 124]. 



The method is particularly useful for handling nonlinear and nonstationary signals, such as those 

produced by PD in high-voltage transformers. During signal processing, the IMF can capture 

subtle irregularities and rising waves associated with PD events, making it possible to isolate the 

discharge signal from background noise [125]. EEMD’s ability to handle multicomponent signals at 

various frequencies makes it a valuable tool for improving PD detection accuracy in challenging 

environments. 
 

6.4 Mathematical Morphology 
 

Mathematical morphology is a nonlinear signal processing method based on the application of 

morphological opera- tors between the measured signal and predefined structural elements. This 

method is particularly effective for shape- based filtering of PD signals [126]. The structural 

elements are used to reshape the PD signal, enhancing certain features while filtering out noise. 

However, the method’s reliance on repeated signal frequencies limits its applicability in 

environments where the signal structure is highly variable [127]. Despite this limitation, 

mathematical morphology can be useful in specific PD detection scenarios where the discharge 

signal exhibits regular patterns, making it easier to filter out unwanted noise. 

 

6.5 Blind Equalization 
 

Blind equalization (BE) has the advantage of not requiring extensive analysis of the source 

signal, making it a versatile method for PD signal processing in complex environments. However, 

one major drawback is that BE typically requires more sensors than the number of discharge 

sources, which can complicate sensor deployment and increase costs. Chan et al. [118] proposed 

an automated BE technique specifically for PD signal processing in power transformers, 

demonstrating its effectiveness in extracting the source signal without the need for detailed source 

analysis. By reducing noise levels in the recovered PD signal, BE offers an efficient method for 

isolating the discharge signal in noisy environments. 
 

6.6 Artificial Neural Network 
 

Artificial neural networks (ANN) have gained considerable attention for their ability to perform 

complex signal processing tasks, including denoising PD signals. The multilayer feed-forward 

neural network (MLPFNN) is one of the most used ANN architectures for this purpose [116]. The 

back-propagation algorithm is employed to update the weights of the input and output layers to 

optimize denoising performance. One of the key advantages of ANN-based denoising is its ability 

to improve accuracy by learning from data and adapting to signal variations. Increasing the number 

of hidden layer nodes enhances the network’s ability to denoise com- plex PD signals, although 

this comes at the cost of increased processing time [128]. ANN techniques have proven highly 

effective for increasing the accuracy of PD detection, especially when combined with other signal 

processing methods [116, 129]. The adaptability and learning capability of ANN make it a powerful 

tool for real-time PD monitoring in high- voltage equipment. 
 



6.7 Wiener Filtering 

Wiener filtering is a widely used denoising technique that operates by minimizing the mean 

square error between the estimated and the actual signal. It is particularly effective in reducing 

noise in signals that are corrupted by white Gaussian noise. In partial discharge (PD) signal 

denoising, Wiener filtering proves valuable in recovering signals that have been significantly 

distorted due to environmental interference. This method works by adjusting the filter response 

based on both the signal and noise characteristics, making it adaptive and suitable for real-time PD 

monitoring applications. 

Wiener filtering has been applied effectively in PD detection for high-voltage transformers, 

enhancing the clarity of measured signals while preserving the underlying PD event characteristics. 

For instance, studies such as [130, 131] have demonstrated the robustness of Wiener filters in 

isolating PD events from noise, particularly when dealing with transient and erratic signal patterns 

often found in PD monitoring. This filtering technique’s ability to address complex noise 

conditions, such as those found in transformer insulation monitoring, makes it a highly effective 

method for increasing the signal-to-noise ratio (SNR) and improving diagnostic accuracy. 
 

6.8 Least Mean Squares 
 

The least mean squares (LMS) algorithm is a well-established adaptive filtering method used to 

minimize the mean square error in noisy signals. LMS works by iteratively adjusting the filter 

coefficients based on the error between the estimated output and the desired signal. In partial 

discharge (PD) detection, LMS is often employed to track and remove noise from signals obtained 

in high-voltage equipment, making it an effective tool for enhancing PD signal clarity, especially 

in real-time monitoring systems. 

This method’s adaptability and efficiency in real-time applications make it suitable for 

environments with fluctuating noise conditions, such as transformer insulation monitoring. LMS 

can handle both wideband and narrow- band interference, which is common in PD signals. For 

instance, the application of LMS in cable system PD detection is detailed in studies like [132], 

which demonstrates the method’s ability to improve PD signal accuracy by reducing signal 

distortions. The combination of LMS with other filtering methods, such as adaptive and wavelet 

filtering, further enhances its performance in denoising PD signals, making it a versatile and 

powerful approach for improving the signal- to-noise ratio (SNR) and detecting PD events 

effectively. 

 

6.9 Singular Value Decomposition 
 

Singular value decomposition (SVD) is an advanced matrix factorization technique widely used 

for noise reduction and signal processing. In partial discharge (PD) denoising, SVD has gained 

prominence due to its ability to separate noise from the underlying PD signal by decomposing the 

signal matrix into singular values and vectors. This method allows for the identification of the most 

significant components of the signal while filtering out the less significant, often noise-related, 

components. 



SVD-based methods are highly effective in processing signals that are erratic and transient, as 

commonly found in PD signals. By isolating noise, SVD can enhance the accuracy of PD detection 

and improve the quality of the recovered signal. For example, in the study [133] an improved 

version of SVD combined with variational mode decomposition (VMD) is proposed, demonstrating 

enhanced performance in signal denoising. This hybrid approach preserves critical signal 

information while effectively removing noise, making it a powerful tool for PD signal processing. 

SVD’s flexibility and robustness in handling complex, high-dimensional data make it an essential 

technique for modern denoising applications, especially in the context of high-voltage transformer 

monitoring. 

 

6.10 Principal Component Analysis 
 

Principal component analysis (PCA) is a powerful statistical technique used for dimensionality 

reduction, noise filtering, and feature extraction in signal processing. In the context of partial 

discharge (PD) detection, PCA is applied to analyze large datasets, reduce redundant information, 

and isolate the most relevant components of the PD signal. By projecting the data onto a set of 

orthogonal principal components, PCA effectively separates the noise from the useful signal, 

improving the accuracy of PD detection. 

PCA has been successfully used in combination with other denoising techniques, such as the 

discrete wavelet transform (DWT), to enhance signal clarity. For example, in the study 

[134] the combination of DWT and PCA demonstrated significant improvements in identifying 

PD signals by filtering out noise while preserving key signal characteristics. This makes PCA a 

valuable tool in processing complex PD signals in high-voltage transformers, where noise can 

obscure critical diagnostic information. By focusing on the principal components of the signal, 

PCA enhances the signal-to-noise ratio, making it an effective method for real-time PD monitoring 

and fault detection. 
 

6.11 Total Variation Denoising 
 

Total variation denoising (TVD) is a robust method used to reduce noise while preserving 

important features of a signal, particularly its edges and abrupt changes, which are crucial in partial 

discharge (PD) signal processing. TVD works by minimizing the total variation of the signal, 

which helps to smooth the noisy components without significantly affecting the underlying PD 

signal. This method is particularly effective when dealing with transient signals that contain sharp 

discontinuities, such as those found in PD events. 

In PD detection, TVD is often combined with other techniques like wavelet thresholding to 

enhance its denoising capabilities. For instance, the study [135] demonstrated how the combination 

of wavelet transforms, and total variation theory could effectively suppress noise while maintaining 

the integrity of the PD signal. This hybrid approach ensures that important diagnostic information 

is retained, making it suitable for applications in high-voltage transformer monitoring. The ability 

of TVD to handle signals with sharp transitions makes it a valuable tool for PD denoising, 

especially in environments where signal clarity is essential for accurate detection and fault 

diagnosis. 
 



6.12 Nonlocal Means 
 

Nonlocal means (NLM) is an advanced denoising algorithm that reduces noise by averaging 

similar patches of a signal or image, even if they are spatially distant. This approach is particularly 

useful in partial discharge (PD) detection, where transient noise can obscure critical signal 

characteristics. NLM works by preserving important signal details while effectively eliminating 

random noise, making it suitable for environments with complex noise patterns. 

In PD signal denoising, NLM has shown promising results when combined with other 

techniques like the complete ensemble empirical mode decomposition with adaptive noise 

(CEEMDAN). For instance, the study [136] demonstrates how the NLM algorithm enhances the 

effectiveness of CEEMDAN by selectively filtering out noise based on the similarity between 

signal segments. This combination improves the clarity of PD signals, preserving crucial 

information for accurate fault detection. Moreover, NLM has also been applied in complex 

environments, such as in the study [137] where the method was used to denoise images for 

detecting faults in high-voltage systems. By maintaining key features and reducing noise, NLM 

proves to be a highly effective technique for PD signal processing and image-based anomaly 

detection. 

VII. Extraction Of Features from High Voltage Equipment 

Extracting multiple features is essential in analyzing dis- charge signals from high-voltage 

equipment. There have been many examples of feature extraction that are often done [25, 138]. 

The statistical overview of feature extraction in high-voltage equipment is the main topic of this 

section. A flow diagram of the partial discharge monitoring system is shown in Fig. 17. The 

monitoring system comprises three components: gathering discharge signals, extracting features 

from discharge signals, and analyzing discharge data. Two distinct patterns, PRPD and TRPD, can 

represent the filtered data after applying the discharge signal- denoising and localization procedure. 

High-dimensional data is frequently encountered when investigating discharge, necessitating 

dimensionality reduction techniques. 

Several methods relate the phase angle, the number of dis- charge pulses, and the amplitude of the 

charge, which is then converted into positive and negative half cycles [139], two separate groups 

that characterize PRPD. The distribution’s skewness, mean, variance, kurtosis, and Weibull 

statistical features can be derived [140]. The statistical feature has the benefit of taking less time 

to compute. This study includes statistical feature analysis for discharge signal extraction on 

transformer isolation flaws [141]. 

Discharge patterns were identified by Chen [142] in power transformers using a fractal-based 

feature extraction method, and the PRPD pattern is processed using an existing technique, namely 

the box-counting technique. Although scale fluctuations and promising surface roughness measures 

mean fractal dimensions are unaffected. The inability to distinguish between features of the same 

fractal surface value led to the creation of a new variable known as lacunarity [143]. 

The widest variance of the data is projected on the smaller dimensions to reduce space while 

increasing the desired sample spread [144]. The scree plot, a graph showing the size of the 

eigenvalues about their number, can be used to determine the number of primary components 



needed to determine the precise value of the actual data [141]. Furthermore, Rahman et al. [86] 

proved that principal component analysis (PCA) can autonomously localize discharge sources in 

transformer windings. Artificial neural networks (machine learning approaches) have now 

demonstrated respectable efficacy for the identification and recognition of discharge [145, 146]. 

Duan et al. [147] used four different fake dis- charge faults (air gap discharge, floating, surface, 

and bar plane) to identify discharge, which is comparable to the methodology for evaluating power 

transformers proposed in [148]. A sparse auto-encoder (SAE) technique is applied in deep learning 

for feature extraction. Deep learning techniques from SAE and SoftMax produce encouraging 

results with an accuracy higher than 96%. 

 

Figure 17 Diagram of the partial discharge monitoring system workflow [22] 

VIII. Classification in High-Voltage Equipment 

This specific classifier is required because hesitancy could result in incorrectly classifying the 

discharge model. Additionally, the features derived from the discharge pattern determine the 

discharge accuracy classification. The initialization of an ANN is done using weights with modest 

values, and training is conducted using a forward and backward method [149]. The hidden layer 

attribute is employed to extract discharge characteristics. Li et al. [150] proposed a convolutional 

neural network (CNN) architecture to recognize the source of the discharge pattern of the UHF 

signal, shown in Fig. 18. The short-time Fourier transform (STFT) produces a 1 × 128 × 256 input 

for CNN. The filter, pooling, and dropout layers comprise the algorithm’s first three hidden layers. 

Adaptive neuro-fuzzy inference system (ANFIS) is employed to eliminate the need to select a 

suitable fuzzy network for operation [151]. ANFIS is an effective method by combining unique 

If–then rules to identify PD patterns based on Sugeno’s fuzzy model [152]. The input variable is 

set between 0 and 1 to improve training efficacy. With a 98% accuracy rate, it was found that the 

ANFIS model is superior to the fuzzy model when applied to detect discharge errors using 

dissolved gas analysis (DGA) [153]. 

Support vector machine (SVM) is a statistical-based regulation manager that uses basic 

algorithms and kernel functions [154]. In this method, discharge pattern data can be characterized 

using vector dimensions, depending on the quantity of input characteristics. SVM works well when 



non-linearity, limited sample sizes, and big dimensions are factors [155]. Another tool to address 

nonlinear problem analysis inefficiencies is the kernel method. The authors in [156] classify 

discharge patterns based on SVM, obtaining favorable results even though the amount of data is 

very complex. 

The decision tree approach utilizes internal nodes for feature testing, where leaf nodes represent 

class labels and routes between roots and leaves represent classification rules [157]. Because this 

method, unlike SVM or ANN, offers visible rules for discharge classification, it has been widely 

employed in discharge classification under various discharge situations. 

A decision tree has determined power transformer cavity sizes and different discharge sources 

[158]. A straightforward and nonparametric approach called K-nearest neighbor (KNN) categorizes 

the training set by identifying the group of k items closest to the test object and assigning a type based 

on the correlation of their respective classes in the surrounding environment [159]. The labeled 

object, the number of nearest neighbors, and the constant "k" are the three main components of 

KNN. The KNN classification focuses on fresh data points according to a higher vote for nearby 

data points. 
 

 

Figure 18 PD categorization with convolutional neural networks [150] 
 

IX. Clustering in High-Voltage Equipment 

Data is grouped into clusters using the unsupervised learning process known as discharge signal 

clustering, where each cluster’s components are closely related. In PRPD and TRPD, the clustering 

technique is frequently utilized to distinguish and organize discharge pulse characteristics from 

various discharge sources. The most recent discharge analysis for high-voltage equipment are 

shown in Table 3. 

The K-means (KM) algorithm is a fast and easy centroid- based clustering method. K-means 

grouping is employed until the assignment and convergence stages are reached, allowing updates 

to be achieved [175]. This method poses challenges due to limited knowledge and limitations such 

as local minimum convergence and fixed K values [176]. 

In hierarchical cluster analysis, clusters are formed using a clustering method known as the 

dominant order [177]. The basic assumption in agglomerative hierarchical clustering is that objects 

belong to discrete groups. Individual clusters are then joined based on the separation between the 



two objects, and the process is repeated until conditions are met. Divisional clustering initially 

allocates all objects to a single cluster, which is then divided into other clusters according to rules 

[178]. The hierarchical cluster analysis method can effectively study large structures, even though 

processing takes longer. Additionally, changes take time to appear once split or merger decisions 

have been made. 
 

 
 



 
 

X. Challenges and Future Prospects 

The resolution and sensitivity of sensor devices need improvement. For instance, although acoustic 

emission sensors have made significant and promising advances in high- voltage equipment for 

detection of corona discharge, there are critical issues and potential solutions: 

1. Study sensor design development thoroughly. 

2. Acoustic emission sensors with high instrument sensitivity are generally required. Therefore, 

creating AE sensors for high-voltage equipment that can operate in any environment and at any 

temperature is challenging. 

3. Investigate the creation of a multipurpose AE sensor that can be used in conjunction with other 

techniques to locate corona discharges (CD). 

4. Study competent methods and techniques in signal processing, especially in signal denoising. 

The main challenge is to create a multipurpose AE sensor system that can detect several CD 

characteristics simultaneously. 

XI. Conclusion and Discussion 

This review study thoroughly analyzes current methods for high-voltage equipment corona 

discharge signal analysis, covering feature representation, classification, and clustering strategies 

for discharge detection, localization, error severity analysis. Different approaches to corona dis- 



charge detection collaboration have been introduced. The importance of detecting corona 

discharge in high-voltage equipment cannot be overstated, as the power system network depends 

entirely on uninterrupted operation. 

This review study also discusses partial and corona dis- charges in high-voltage equipment and 

various flaws. Electric and nonelectric discharge detection methods of many types have been 

explored, along with the benefits and drawbacks of each method. There has been extensive 

discussion on the importance of discharge analysis in high-voltage equipment to determine the 

specific type of discharge damage. The corona discharge monitoring system comprises various 

processes for analyzing flaws, including feature extraction, clustering, classification, and CD 

detection. Every stage has been detailed, accompanied by suggestions for contemporary techniques. 

Online CD measurement in high-voltage equipment is an effective method for analysis due to the 

complicated structure of high-voltage equipment and the constraints posed by on- site noise. 

Detection techniques can be further researched to identify symptoms and mitigate the significant 

impact of some noise on online sensing. 
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