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Abstract
This study reviews more than one hundred significant studies on various methods and advances in the detection of partial
discharges (PD), with a specific focus on corona discharges (CD) in medium-voltage switchboards (MV) using the acoustic
emission (AE) method. Furthermore, the challenges and prospects of this method are discussed. The article delves into several
aspects of CD diagnostic research, including detectionmechanisms, development of detection tools, source determination, and
severity evaluation. Furthermore, this article investigates the impact of different variables such as humidity, applied voltage,
and gas pressure on corona discharges and how these factors influence diagnosis.While CD detection inMV cabinets has been
extensively reported and investigated, most studies have concentrated on various CD detection approaches in gas-insulated
switchgear (GIS), with limited exploration in other areas. In contrast, this report comprehensively addresses numerous features
of CD diagnosis in MV cabinets and establishes a framework for further progress. Considering current research trends, a
thorough evaluation is anticipated. This review describes the current state of CD detection in the study and development of
cubicles. Therefore, it can serve as a reference for researchers conducting further investigations into the real-world impact of
this issue on industry.
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1 Introduction

In electrical equipment such as MV switchboards, GIS, and
equipment related to high voltage, partial discharges (PD)
and corona discharge (CD) may occur, which are discharge
phenomena in the insulating material.

These discharges affect only a tiny portion of the dielectric
or gas of the insulation [1]. PD can occur due to defects in
the insulation of electrical equipment, failures in electrical
cabinets are primarily caused by this defect [2]. Insulation
will slowly deteriorate due to PD, affecting the electrical
equipment’s regular operation. Therefore, both the internal
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insulation condition of the electrical system and the detection
of insulation problems are possible with accurate and reli-
able PD [3]. PD and CD are both electrical phenomena that
involve the release of electrical energy in insulatingmaterials.
While they share similarities, they are distinct phenomena
with different characteristics.

Pulses of current, electromagnetic, acoustic emission,
light emission, and other phenomena associated with PD can
be employed for its identification [4]. The technique of pulse
current (PCM) [5, 6], ultra-high-frequency (UHF) method
[7–9], ultrasonic acoustic wave (UAW) method [10], opti-
cal detection [11], and transient earth voltage (TEV) method
[12] constitute the primarymethods for detecting PD and CD
in use today.

The primary cause of the development of corona discharge
conditions (CD) is illustrated in Fig. 1. Based on numerous
observed instances of corona, threemain factors contribute to
its development: factors of geometrics, spatial, and material
contamination [13].

First, geometric factors include sharp edges on conduc-
tors, multiple connections, and vulnerable components in
switchgear cabinets.
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Fig. 1 The main cause of the development of the corona discharge con-
dition

Fig. 2 Corona tracks close to bus bars

Secondly, spatial factors involve small air spaces between
conductors, insulation boards, and switchgear cabinet com-
ponents. This may arise from various conditions such as the
conductor is bonded, the conductor contacts the insulator, the
cable contacts the grounded surface, and the bus bar near the
fiber-resin support, as shown in Fig. 2.

Finally, dust and other particulate contamination on con-
ductors and insulators contributes to the occurrence of
corona, as depicted in Fig. 3.

While the detectors installed inside the apparatus may
exhibit relatively high sensitivity, they can potentially lead to

Fig. 3 Corona discharge formed because of contamination on ceramic
bushing

new insulating issues.When assessing the insulation of high-
voltage equipment, each method may have its benefits and
drawbacks.However, certain detection techniquesmay prove
more effective for specific high-voltage equipment than oth-
ers.

The sensors proposed in this article are crafted using the
acoustic wave approach, a more sustainable process that
avoids additional insulation issues while maintaining excel-
lent sensitivity, in contrast to the strategies mentioned above
[2, 14–16]. Acoustic detection is commonly employed for
GIS flaw diagnostics in factory tests and everyday usage.
Several uses of using acoustic methods, but not limited to
[17–21]: (a) are nondestructive and noninvasive; (b) strong
against electromagnetic interference; (c) free from influence
from external capacitors, ensuring that the sensitivity of the
measurement is not affected by the capacitance of the object
being tested; etc.

Numerous monitoring methods for PD or CD have been
recently discovered and proposed. It is essential to provide
examples of the shortcomings of thesemethods and elucidate
their functionality. Several review articles in the literature
delve into these methods, presenting trends and the state of
the art in specific areas [22–24].

Thiswork aims to analyze recent advancements and trends
in CD detection, particularly in medium-voltage cubicles,
and provide a diagnostic overview.This review focuses on the
causes of cubicle damage, elucidates methods of CD detec-
tion, clarifies various techniques for identifying isolation
defects, and establishes a theoretical foundation for current
severity evaluation approaches, concentrating on publica-
tions from the last ten years. In addition to highlighting
relevant gaps, this review presents a taxonomy for some of
the tactics used in the literature, serving as a starting point
for additional study on the subject.
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2 Detection discharge inmedium-voltage
cubicles

A local electric voltage is produced by PD, an electrical dis-
turbance in the insulator that does not bridge the electrodes.
This process decreases high-voltage equipment’s insulation
life and slows insulation degradation [25]. PD occurs when
an electric field exceeds the threshold value and partially
breaks down the surrounding medium [26]. If PD behaves
transiently, a pulsed current with a nanosecond to microsec-
ond duration is present. Complete damage typically results
in insulators losing all information about the PD type [27].
Therefore, constant monitoring is necessary to address the
issue at stages [28, 29]. The isolation conditions can be deter-
mined using the PD pattern of each type of defect, each
having unique degradation characteristics [30].

Corona activity can be monitored through various meth-
ods. The most effective approach is to observe the light
produced by the corona or to listen to its sound. Corona activ-
ity is visible to the naked eye only in very dark conditions.
Another method for monitoring corona is by listening to the
sound it generates [31]. The noise caused by corona can be
described as a hissing sound, often audible to the human ear.

In an air gap with a nonuniform field, electrical failure
begins with the emergence of the initial voltage (inception
voltage), marking the initiation of the corona occurrence
mechanism. Corona discharge occurs when two electrodes
(conductors) are positioned with sufficient gaps and under
satisfactory environmental conditions with nonuniform ter-
rain, and a sufficiently high voltage is applied. A distinctive
characteristic of corona emergence is that the electrode
appears luminous, emitting noise and the smell of ozone
(O3). With continuous voltage increase, complete electrical
failure occurs in a flash jump, where the air between the
electrodes becomes conductive, allowing the flow of electric
current [32].

Electric tree planting can occur in areas with significant
electric fields in the dielectric material due to flaws such as
gas cavities, sharp electrode edges, or metal particles. Ultra-
violet light and ozone gas are by-products of voids beneath
high electrical voltage, leading to the decomposition of the
insulator and the creation of emptiness. Repeated cavity gen-
eration results in weak points and the formation of an electric
tree, ultimately causing destruction. Additionally, due to pol-
lution generating flashover on the surface and high electric
field voltage, an electric tree can form on the dielectric sur-
face. An insulator (ceramics, silica, etc.) is present between
the electrode pairs, usually causing the removal of the dielec-
tric barrier [33].

Electrical equipment can experience PD, which is the
occurrence of discharge in an insulating medium under high
voltage (HV). This discharge does not result in a complete
breakdown of the gas or dielectric insulation; instead, it

occurs locally. Insulation flaws in electrical equipment can
lead to PD, a primary factor in GIS failure. PD causes a
gradual reduction in insulation, which interfereswith the reg-
ular operation of electrical equipment. Therefore, the internal
isolation status of power equipment may be evaluated, and
insulation problems can be detected using accurate and trust-
worthy PD detection methods [34].

Techniques for measuring PD are based on insulation
systems’ various physical and chemical processes. To bet-
ter understand the phenomenon of void discharge, research
was conducted for ten years beginning in the 1960s, when
this monitoring method was initiated [35]. Another signif-
icant advancement was the satisfactory progress made in
the late 1970s toward various PD processes such as tree-
ing, flashover, sparks, avalanche, and streamer [36–38]. PD
causes the following physical events in a power transformer
isolation system: (a) Mechanical vibrations appear, resulting
in ultrasonic acousticwaves. (b) The emission of electromag-
netic waves at extremely high frequencies. (c) The release of
nitrogen and ozone is due to chemical events. (d) The gener-
ation of heat and light radiation [39].

To develop automatic PD detection, the PD monitoring
system has recently been expanded to include data analy-
sis techniques and sensor technologies [40]. A typical PD
surveillance system consists of a PD unit for signal collection
feature extraction and a unit for data analysis. Sensors in the
PD signal-gathering unit can identify physical activities that
release various types of energy. There are two distinct pattern
graphs in the PD signal: PD with a time-resolved partial dis-
charge (TRPD) and PDwith phase-resolved partial discharge
(PRPD) [41]. It can be observed that "q" is a parameter in
the PRPD, and "t" is a time parameter in the wave graph,
while the q–t waveform is represented in the TRPD. This
characteristic is also utilized in PD data processing, which
typically employs more innovative pattern recognition meth-
ods and uses fuzzy intelligent systems to distinguish between
PD and noise or to identify the source of PD [42].

3 Partial discharge and corona discharge
detectionmethods

PD can result in a variety of physical events that can be
observed: The phenomena may manifest as the presence
of gases or changes in the chemical composition [43–47],
optical light [48–52], current pulse [53–57], electromagnetic
wave [58–62], and acoustic emissions [63–67] which is illus-
trated in Fig. 4. Electrical and nonelectrical approaches are
two primary groups of physical phenomena that allow for the
detection and quantification of PD. There are several meth-
ods and sensors, as well as disadvantages and advantages, in
PD detection presented in Table 1.
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Fig. 4 Partial discharge and corona discharge detection methods

3.1 Chemical and gas presencemethod

PDoccurs in SF6 gas, some of the SF6 molecules decompose,
reacting with impurities in SF6, namely H2O and O2. Var-
ious chemical products are formed, including SOF4, SOF2,
SO2F4, SF4, SO2, CF4, CO2, HF, etc. In a GIS, decompo-
sition products are indicators for PD detection. Chemical
method detection is almost unaffected by noise and elec-
tromagnetic interference [43–47]. In Fig. 5. The electrodes
are high voltage, and the breakdown of SF6 is carried out due
to corona discharge [68].

Twomain chemical testing procedures are used: dissolved
gas analysis (DGA) and high-performance liquid chromatog-
raphy (HPLC). The DGA test identifies the level of dissolved
gas released from the transformer during PD (such as hydro-
gen and methane). However, there is no standard value for
theDGA test results and the concentration of dissolved gas in
the oil, which correlates with damage to the transformer [23].
Figure 6 illustrates the chemical PD detection technique.

3.2 Optical method

PD activity detection in power transformer oil can utilize
supporting tools with an optical approach. Mach–Zehnder
interferometry (MZI), Fabry–Perot interferometer (EFPI),
and Bragg fiber gratings (FBG) are examples of typical PD
optical detection sensors [22]. Figure 7 illustrates the essen-
tial operation of FBG.

In 2013, an unconventional method of measuring PD in
power transformers using fluorescence sensors was proven
reliable, shown in Fig. 8. However, studies on the ability of
fluorescent sensors to detect PD in transformer oil produced
dubious results with several flaws. The correlation between
the activity of photons, PD via optical signals, and PD charge
restrictions in oil is still being investigated in experiments.
Measurements for power transformer oil became achievable
in 2014 [22]. However, this is particularly challenging for
ancient transformer oils.

In addition to the optical approaches mentioned above,
partial discharge (PD) detection can also be done using visual
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Table 1 Methods and sensors system for PD detection

Method Advantages and opportunities Disadvantages and weakness Sensors application

Chemical or gas
presence [22,
23]

Accurately measures and records PD sig-
nals for use in the laboratory

Very sensitive
Online surveillance is possible

Dissolved gas concentrations and
various mistake kinds do not cor-
relate

The degree of dielectric breakdown
is independent of glucose concen-
tration

PD source unknown
Unclear standards for dissolved
gas and glucose in the oil or the
level in the transformer

Chemical samples

Optical [22, 23] Utilization is possible for a wide range of
chemical and physical parameters

Small and light in weight
High sensitivity
EMI resistance
Extensive frequency range
Being able to endure high temperatures
It is possible to monitor online

The detection of insulation is not
practical

Non-calibratable
Localizing the PD source during
surgery necessitates either
manual or eye contact

Mach–Zehnder fiber inter-
ferometers

Multimode fiber
Fabry–Perot interferome-
ters

Fiber Bragg grating
(FBG)

Electrical [22,
23]

Statistically significant laboratory record-
ings of PD signals

PD signal with low noise level
High sensitivity
Minimal signal attenuation
Measurements are precise
Wide detection field of view
It is possible to localize the source of PD

False alarm due to greater sensitiv-
ity

Vulnerable to noise
On-site Measured possible
Affected by EMI
Long-term monitoring is not possi-
ble

There is a lot of noise outside
Online surveillance is useless

Coupling capacitance

Electromagnetic
(UHF) [22, 23]

Enhanced immunity to outside noise
Extremely sensitive and non-interfering
Trustworthy and unaffected by any
induced current

Appropriate for in-service monitoring or
online detection

UHF signal activates an acoustic sensor
Experiments can be carried out online
The PD source can be located

Costly
Unable to provide PD load count
Highly susceptible to electrical
noise produced by radios, televi-
sions, and other electronics

There is no calibration technique
available (calibration issue)

Sensor for a drain valve
Conical monopole
antenna, internal sensor

Window sensor
HFCT sensor

Acoustic [22, 23] Convincing real-time results that can be
applied on-site

Immune to device noise and electromag-
netic noise for online PD detection

Multiple sensors can be used to localize the
PD source

Sensors can be installed without modifica-
tion

Monitoring can be done both online and
offline

Low sensitivity
Signal interference caused by back-
ground noise

Data processing complexity

Microphone
Piezoelectric
Accelerometer
Optical fiber

imaging techniques with cameras. This method utilizes cam-
eras that are sensitive to certain frequencies of light emissions
produced by PD activity. The use of digital cameras has
proven effective in detecting PD in various electrical equip-
ments [71]. This technique offers the advantage of being
able to monitor PD in real-time and noninvasively. However,
environmental conditions, such as lighting, temperature, and
type of oil material, can affect the accuracy of detection. The
implementation of imaging technology in detecting PD is

still developing to provide a more accurate and reliable solu-
tion in monitoring the performance of high-voltage electrical
equipment.

3.3 Electrical method

In the electrical detection method, pulses are utilized to form
a signal using the electric detection method. The test zone is
directly connected to the built circuit, enabling the detection
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Fig. 5 Schematic diagram of SF6 decomposition experiments (unit:
millimeter) [68]

of the PD-indicating pulse of current [72]. Two international
commissions that support this method are the International
Electrotechnical Commission (IEC) and the Institute of Elec-
trical and Electronics Engineers (IEEE) [73]. Figure 9a, b
[1, 74] illustrates a general electrical detection technique for
checking the state of the power transformer. Although online
testing is susceptible to electromagnetic interference but suf-
ficient for offline testing, further development of methods to
identify PD activity is required [75, 76].

The key benefits of the electrical PD detection approach
are its wide frequency range, excellent sensitivity, and ability
to locate the PD cause. However, this method also has certain
drawbacks, including the inability to conduct on-site testing,
susceptibility to electromagnetic interference (EMI), and the
presence of significant ambient noise [69, 77].

In Fig. 10, this circuit has several advantages when viewed
from the perspective of external interference. However, cal-
ibration is somewhat challenging, involving balancing and
synchronizing multiple devices.

Figure 11 illustrates that when high-voltage (HV) equip-
ment in the form of a transformer is the part being tested for
PD, the level of inductance complicates measurement, mak-
ing it more complex, and the internal circuit is challenging.
Connecting the transformer to the measuring equipment, i.e.,
via a capacitive bypass bushing, can solve this problem.

3.4 Electromagnetic (UHF) method

In some early studies, electromagnetic (EM) techniques
demonstrated a linear correlation between the PD charge and
the potential signal source at a specific PD position [78].
Conic, spiral, and Vivaldi antennas can be used as sensors
in the detection of ultra-high-frequency (UHF) electromag-
netic waves [79, 80]. UHF sensors are currently a notable
research area being developed due to their uses, such as being
unaffected by low-frequency signals, experiencing insignifi-
cant noise effects from the internal transformer construction
through denoising and white noise removal techniques, and
encountering corona-free pulse interference [81, 82].

Figure 12 illustrates a power transformer’s circuit
schematic, showing the effects of several PD types on its
UHF calibration [83]. Various types of current transform-
ers, including Rogowski coils, HFCT, and RFCT, have been
extensively studied as sensors for PD detection [84–87].

This technique relies on identifying electromagnetic
waves produced in transformers during PD incidents. Typi-
cally, PD in the transformer produces electromagnetic wave
signals between 300 MHz and 3 GHz [88].

A diagram of the PD detection method on UHF is shown
in Fig. 13. Here, an antenna sensor captures EM waves gen-
erated by the PD event on the transformer. The signals of PD
must be amplified to a frequency range that the UHF sensor
can detect because it is usually too weak to be detected by the
sensor. Between the measurement system and the sensor is a
connection to the amplifier. A filter is also attached between
the sensor and the measuring apparatus to reduce outside
noise [81]. This produces a PD electromagnetic signal.

Excellent ambient EMI sensitivity and immunity are
additional features of this method, which are essential for
on-site monitoring [89]. The fundamental problem with this
approach is the lackof calibration procedures and the sensor’s
high sensitivity to electrical noise from radios, televisions,
and other sources when placed externally [90, 91].

3.5 Acoustic emissionmethod

The transformer’s PD typically produces an auditory emis-
sion signal with a frequency range of 20 kHz to 1 MHz
[92]. Acoustic sensors like piezoelectric, fiber optic, etc., can
detect these acoustic waves as they travel through the trans-
former. The transformer tank can have this sensor placed
either inside or outside of it. The speed of an acoustic sound
wave is affected by the medium through which it passes.
Echoes and signal reflections on the surface of the material
also influence it. Therefore, the characteristics of thematerial
are tested nondestructively by analyzing how these waves
propagate through the supporting equipment of the trans-
former [70, 93]. Figure 14 shows the acoustic PD detection
process for transformers.
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Fig. 6 Method of Chemical PD
Detection [69]

Fig. 7 The operation of fiber
Bragg grating sensors [22]

The acoustic emission method can determine the PD
source’s position compared to electrical and chemical meth-
ods. This method is also robust against the effect of EMI [69,
94]. For instance, the iron core and windings of a transformer
cause wavefronts to be reflected and refracted as an acous-
tic pressure wave travels through them. The signal strength
is diminished by the transformer’s internal multipath sound
wave propagation [93]. This technology has lower sensitiv-
ity than electrical engineering because of wave propagation
reflections and echoes, resulting in a feeble received signal.

The sensor must be highly responsive to even the tiniest fluc-
tuations in signal amplitude to record PD [69].

3.6 Combinational method

A combination of AE and DGAmethods has been attempted
to find the disturbance position [95]. Using DGA and AE
techniques together is similar to photo-acoustic spectroscopy
(PAS). In Fig. 15, the use of PAS is shown [96]. Ultrasonic
and UHF sensors have been combined in various ways to
achieve good results in detecting discharge sources and can
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Fig. 8 Optical PD detection method [70]

Fig. 9 a IEC 60270-based indirect measurement circuit using external
coupling capacitor. b Capacitor through bushing taps for coupling [1]

also utilize a combination of EM and acoustic techniques
[97]. By comparing the AE sensor signal with the signal
from the EE during the reference time of the discharge, it is
possible to obtain a better result, ensuring that the detected
signal is not noise in an inventive form [98].

A combination of several methods has been used to iden-
tify discharges, which are employed to determine the overall
insulation failure of a transformer [99]. Combining AE and
optical techniques ensures that the reference signal origi-
nates from the discharge source while using the other sensor
as the AE sensor to determine the location of the PD [100].
A comprehensive comparison of the various discharge detec-
tion methods applied is presented in Table 1.

Fig. 10 Basic circuit of the electrical PD detection according to IEC
60270 [1]

4 Diagnostic CD on high-voltage equipment

CD diagnostics is an effective way to categorize defects in
high-voltage booths and switchgear equipment. The primary
goals of CD diagnosis are to distinguish between different
types of defects and to pinpoint the CD’s underlying eti-
ology. The diagnosis of CD is challenging because cubicle
switchgear has a very intricate insulation scheme with nearly
inaccessible internal components. Due to its tiny structure,
online testing was only done on switchgear and cubicle ter-
minals. Sophisticated testing equipment and knowledgeable
staff are required to make a correct diagnosis.

The IEC 60270 standard states that electrical discharge
measurement has excessive noise due to sensitivity limita-
tions [101]. The cubicle-CD switchgear emits EM waves in
the same frequency range as the UHF technique, with a high
EM frequency range of 300 to 3000 MHz. Due to the envi-
ronment’s EM resistance, installation of the UHF sensor in
the cubicle switchgear is possible even while it is in use and
still allows for proper CD signal recognition. A piezoelectric
sensor positioned on the cubicle-switchgearwall can perform
CD localization; now, the acoustic signal arrives to record
CD activity using EE or EM approaches. The issue is that
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Fig. 11 PD detection circuit by
the capacitive bypass of the
bushing [1]

Fig. 12 Circuit drawing for analyzing the PD effect [83]

Fig. 13 The UHF PD detection method block diagram [91]

the high-voltage equipment’s intricate structure distorts the
acoustic signal.

The EE discharge measurement system integrates the
recharge current to determine the apparent charge level (in

pC). In contrast, the EM discharge measurement system
senses EM radiation through the UHF sensor to measure
voltage (in mV) [102]. Given that the measurements were
not made directly, the apparent charge (pC) in the factory
acceptance test (FAT) is acceptable since the actual discharge
value (pC/mV) could not be determined [103].

The sensitivity of electrical measurements can be
increased by applying coupling or quadrupole capacitor
effects. For that, it is essential to identify the antenna fac-
tor (AF) [104]. The gigahertz transverse electromagnetic
(GTEM) cell is built with a coaxial cable that extends inside
of it, and by isolating the device under test from external
electromagnetic interference, a known electromagnetic field
is introduced equipment under test (EUT). The first calibra-
tion step is the GTEM cell, which reflects the sensor effect.
The transformer andUHFantenna are linked to assess the cal-
ibration sensitivity for measurement competency. A known
UHF calibration impulse was initially introduced in [104]
to calibrate the cable and measuring instrument. The cal-
ibrated path is then given audio frequency (AF) to add a
sensor feature. AF can give various calibration points from
the calibrator to the antenna in the transformer by inserting a
transfer function with a frequency dependency specification.
The calibration procedure can be sped up by applying the
scalar correction factor AF, which accurately displays the
discharge frequency. Since most power transformers were
placed more than 40 years ago, online monitoring of trans-
formers with diagnostics has become essential [105].

5 Monitoring using acoustic emission
method

This study focuses on the description of the acoustic emis-
sionmethod presented in Table 2, where numerous discharge
detection methods are demonstrated based on acoustic emis-
sion for high-voltage equipment. A brief explanation of the
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Fig. 14 Oil-filled transformer
acoustic PD detection method
[69]

Fig. 15 Spectroscopy-based photo-acoustic DGA system [96]

measurement method is given in this section. AE in power
transformers can also occur mechanically due to oil evap-
oration close to the band, an electric arc, and mechanical
vibration. The signal resembles a pressure wave and has
distinct characteristics for different AE sources, such as fre-
quency and amplitude variations [40].

The block diagram of the power transformer recording
system for detecting the AE signal from the discharge is
shown in Fig. 16. This system is used when the power trans-
former is operating normally. For many ultrasonic systems,
the wideband piezoelectric transducer is a typical transduc-
tion component. To detect the AE signal, it is magnetically
placedon the transformer tank.TheAEsignal is subsequently
amplified, subjected to filtering, and sent to the AE analyzer
for recording.

Multiple origins of discharge can be found using the AE
approach. A microphone [106, 107], a piezoelectric sensor
[108], an accelerometer [109], and a fiber optic (FO) sen-
sor [110–112] are examples of AE detection devices. Due

Fig. 16 Recording system to detect AE Signals from PD [22]

to the signal’s quick attenuation as it passes through differ-
ent media, the fundamental flaw of the AE approach is the
poor localization of the discharge source on the transformer
winding [113].

Complex acoustic emission behavior, a low detectable
signal strength, and a high cost are drawbacks of the AE
technique. These AE detection methods are outperformed
by fiber optic sensors due to their higher signal-to-noise
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Table 2 Comparison of acoustic emission methods for partial discharge detection monitoring

Acoustic
emission
method

Advantages Disadvantages Key features

Microphone
106, 107]

- Highly sensitive to sound in low- to
mid-frequency ranges

- Noninvasive and easy to implement

- Relatively inexpensive and widely
available

- Less sensitive to
high-frequency vibrations
produced by PD

- Susceptible to background
noise interference

- Limited detection range

- Detects airborne sound waves

- Typically used in environments
with controlled noise

Piezoelectric
sensor [108]

- Highly sensitive to mechanical
vibrations caused by PD

- Wide frequency response, suitable for
detecting different levels of PD
activity

- Can be affected by mechanical
noise from the surroundings

- Requires direct physical
attachment to equipment
(invasive)

- Converts mechanical vibrations
into electrical signals

- Effective for detecting PD in
environments with mild
mechanical noise

Accelerometer
[109]

- Accurate in detecting vibrations and
acceleration changes in equipment

- Capable of monitoring vibrations
from very low to very high
frequencies

- Relatively expensive and
requires a more complex setup

- Susceptible to interference
from external vibrations not
related to PD

- Measures acceleration changes
due to PD activity

- Used to detect vibrations in
stable mechanical conditions

Fiber optic
sensor
[110–112]

- Noninvasive and resistant to
electromagnetic interference

- Capable of detecting small vibrations
over a wide frequency range

- Can interact with remote monitoring
technology

- Requires more expensive
equipment and complex
installation

- Sensitive to environmental
changes such as temperature
and pressure

- Uses changes in light in optical
fibers to detect vibrations

- Very effective in heavy
industrial environments full of
electromagnetic interference

- In this context, although fiber
optic sensors operate on optical
principles, they can be used to
detect acoustic waves
generated by partial discharges,
for example, through
techniques such as fiber Bragg
grating (FBG) or distributed
acoustic sensing (DAS)

ratio and wider auditory field detection (SNR). Multi-CD
sources and noise resulting from the internal high-voltage
equipment design can be found using denoising and opti-
mization approaches.

The capacity to identify the discharge pressure wave
and distinguish the resulting signal from background noise
determines how accurate the acoustic discharge location
approximation will be. To perform accurate discharge source
analysis, a high-sensitivity sensor system is needed to detect
acoustic waves at multiple transformer sites, and a reliable
signal processing system is needed to correct the interpreta-
tion of the results [114].

6 Denoising techniques

The CD pulses are erratic, transient, and nonperiodic. The
excess discharge impulse in the acquired CD signal cap-
tured by the CD sensor makes processing difficult. Signal

processing methods must be used to segment the received
signal further. Signal processing techniques are effective
when considering several sources of CD generated at various
isolations. Several signal-denoising algorithms have been
widely used, such as artificial neural networks, matched fil-
tering, empirical mode decomposition, and other methods
[115–118]. The following is a description of some popular
denoising methods.

6.1 Fast Fourier transform

The fast Fourier transform (FFT) method computes the
discrete Fourier transform (DFT) [119], a mathematical
technique that converts time-domain signals into their cor-
responding frequency components. While effective for sta-
tionary signals with small fluctuations, FFT has limitations
in dealing with transient, nonperiodic signals such as those
associated with partial discharge. The discharge signal
exhibits erratic and irregular behavior, which is not well
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suited for FFT’s assumptions of signal stability and peri-
odicity. As a result, alternative methods, such as the wavelet
transform, are often preferred for PD analysis [120]. Despite
its limitations, FFT remains useful for analyzing frequency
components in more stable environments or for initial signal
segmentation.

6.2 Wavelet transform

The wavelet transform (WT) has gained widespread appli-
cation in PD signal processing due to its ability to analyze
both stationary and nonstationary signals. Unlike FFT, which
transforms the entire signal into the frequency domain, the
WT decomposes the signal into small wavelets that repre-
sent localized time–frequency information [121]. The WT
is particularly well-suited for PD detection because it can
isolate high-frequency discharge events while filtering out
background noise. Its flexibility in time and frequency res-
olution makes it a powerful tool for real-time monitoring of
PD activity [122]. This approach allows for better handling
of transient, erratic signals such as PD by dividing the signal
into frequency bands with wavelet coefficients. As a result,
noise can be reduced more effectively while preserving crit-
ical features of the discharge signal [118].

6.3 Ensemble empirical mode decomposition

Ensemble empirical mode decomposition (EEMD) is a
refinement of the traditional EmpiricalModeDecomposition
(EMD) method, which aims to extract intrinsic mode func-
tions (IMF) from complex signals [117]. The Hilbert–Huang
transform (HHT) consists of two parts: Hilbert spectrum
analysis (HSA) and empirical mode decomposition (EMD).
Although HHT is frequently employed in error analysis, it
has limitations in the EMD technique,where issues occur due
to problems with mixing modes during the sieving process.
EEMD is a more accurate and robust noise-assisted analysis
technique [123, 124].

The method is particularly useful for handling nonlin-
ear and nonstationary signals, such as those produced by
PD in high-voltage transformers. During signal processing,
the IMF can capture subtle irregularities and rising waves
associated with PD events, making it possible to isolate the
discharge signal from background noise [125]. EEMD’s abil-
ity to handle multicomponent signals at various frequencies
makes it a valuable tool for improving PD detection accuracy
in challenging environments.

6.4 Mathematical morphology

Mathematical morphology is a nonlinear signal processing
method based on the application of morphological opera-
tors between the measured signal and predefined structural

elements. This method is particularly effective for shape-
based filtering of PD signals [126]. The structural elements
are used to reshape the PD signal, enhancing certain features
while filtering out noise. However, the method’s reliance on
repeated signal frequencies limits its applicability in envi-
ronments where the signal structure is highly variable [127].
Despite this limitation,mathematicalmorphology canbeuse-
ful in specific PD detection scenarios where the discharge
signal exhibits regular patterns, making it easier to filter out
unwanted noise.

6.5 Blind equalization

Blind equalization (BE) has the advantage of not requiring
extensive analysis of the source signal, making it a versatile
method for PD signal processing in complex environments.
However, one major drawback is that BE typically requires
more sensors than the number of discharge sources, which
can complicate sensor deployment and increase costs. Chan
et al. [118] proposed an automated BE technique specifically
for PD signal processing in power transformers, demonstrat-
ing its effectiveness in extracting the source signal without
the need for detailed source analysis. By reducing noise lev-
els in the recovered PD signal, BE offers an efficient method
for isolating the discharge signal in noisy environments.

6.6 Artificial neural network

Artificial neural networks (ANN) have gained considerable
attention for their ability to perform complex signal process-
ing tasks, including denoising of PD signals. The multilayer
feed-forward neural network (MLPFNN) is one of the most
used ANN architectures for this purpose [116]. The back-
propagation algorithm is employed to update the weights
of the input and output layers to optimize denoising perfor-
mance. One of the key advantages of ANN-based denoising
is its ability to improve accuracy by learning from data and
adapting to signal variations. Increasing thenumber of hidden
layer nodes enhances the network’s ability to denoise com-
plex PD signals, although this comes at the cost of increased
processing time [128]. ANN techniques have proven highly
effective for increasing the accuracy of PD detection, espe-
cially when combined with other signal processing methods
[116, 129]. The adaptability and learning capability of ANN
make it a powerful tool for real-time PD monitoring in high-
voltage equipment.

6.7 Wiener filtering

Wiener filtering is a widely used denoising technique that
operates by minimizing the mean square error between the
estimated and the actual signal. It is particularly effective
in reducing noise in signals that are corrupted by white
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Gaussian noise. In partial discharge (PD) signal denoising,
Wiener filtering proves valuable in recovering signals that
have been significantly distorted due to environmental inter-
ference. This method works by adjusting the filter response
based on both the signal and noise characteristics, making it
adaptive and suitable for real-time PD monitoring applica-
tions.

Wiener filtering has been applied effectively in PD detec-
tion for high-voltage transformers, enhancing the clarity of
measured signals while preserving the underlying PD event
characteristics. For instance, studies such as [130, 131] have
demonstrated the robustness ofWiener filters in isolating PD
events from noise, particularly when dealing with transient
and erratic signal patterns often found in PD monitoring.
This filtering technique’s ability to address complex noise
conditions, such as those found in transformer insulation
monitoring, makes it a highly effective method for increas-
ing the signal-to-noise ratio (SNR) and improving diagnostic
accuracy.

6.8 Least mean squares

The leastmean squares (LMS) algorithm is awell-established
adaptive filtering method used to minimize the mean square
error in noisy signals. LMS works by iteratively adjusting
the filter coefficients based on the error between the esti-
mated output and the desired signal. In partial discharge (PD)
detection, LMS is often employed to track and remove noise
from signals obtained in high-voltage equipment, making it
an effective tool for enhancing PD signal clarity, especially
in real-time monitoring systems.

This method’s adaptability and efficiency in real-time
applications make it suitable for environments with fluc-
tuating noise conditions, such as transformer insulation
monitoring. LMS can handle both wideband and narrow-
band interference, which is common in PD signals. For
instance, the application of LMS in cable system PD detec-
tion is detailed in studies like [132], which demonstrates the
method’s ability to improve PD signal accuracy by reducing
signal distortions. The combination of LMSwith other filter-
ing methods, such as adaptive and wavelet filtering, further
enhances its performance in denoising PD signals, making it
a versatile and powerful approach for improving the signal-
to-noise ratio (SNR) and detecting PD events effectively.

6.9 Singular value decomposition

Singular value decomposition (SVD) is an advanced matrix
factorization technique widely used for noise reduction and
signal processing. In partial discharge (PD) denoising, SVD
has gained prominence due to its ability to separate noise
from the underlying PD signal by decomposing the signal
matrix into singular values and vectors. This method allows
for the identification of the most significant components of
the signal while filtering out the less significant, often noise-
related, components.

SVD-basedmethods are highly effective in processing sig-
nals that are erratic and transient, as commonly found in PD
signals. By isolating noise, SVD can enhance the accuracy
of PD detection and improve the quality of the recovered
signal. For example, in the study [133] an improved ver-
sion of SVD combined with variational mode decomposition
(VMD) is proposed, demonstrating enhanced performance in
signal denoising. This hybrid approach preserves critical sig-
nal information while effectively removing noise, making it
a powerful tool for PD signal processing. SVD’s flexibility
and robustness in handling complex, high-dimensional data
make it an essential technique for modern denoising appli-
cations, especially in the context of high-voltage transformer
monitoring.

6.10 Principal component analysis

Principal component analysis (PCA) is a powerful statistical
technique used for dimensionality reduction, noise filtering,
and feature extraction in signal processing. In the context
of partial discharge (PD) detection, PCA is applied to ana-
lyze large datasets, reduce redundant information, and isolate
the most relevant components of the PD signal. By project-
ing the data onto a set of orthogonal principal components,
PCA effectively separates the noise from the useful signal,
improving the accuracy of PD detection.

PCAhas been successfully used in combinationwith other
denoising techniques, such as the discrete wavelet transform
(DWT), to enhance signal clarity. For example, in the study
[134] the combination of DWT and PCA demonstrated sig-
nificant improvements in identifying PD signals by filtering
out noise while preserving key signal characteristics. This
makes PCA a valuable tool in processing complex PD sig-
nals in high-voltage transformers, where noise can obscure
critical diagnostic information. By focusing on the principal
components of the signal, PCA enhances the signal-to-noise
ratio, making it an effective method for real-time PD moni-
toring and fault detection.

123



Electrical Engineering

Fig. 17 Diagram of the partial discharge monitoring system workflow [22]

6.11 Total variation denoising

Total variation denoising (TVD) is a robust method used to
reduce noise while preserving important features of a signal,
particularly its edges and abrupt changes, which are crucial
in partial discharge (PD) signal processing. TVD works by
minimizing the total variation of the signal, which helps to
smooth the noisy components without significantly affecting
the underlying PD signal. This method is particularly effec-
tive when dealing with transient signals that contain sharp
discontinuities, such as those found in PD events.

In PD detection, TVD is often combined with other tech-
niques like wavelet thresholding to enhance its denoising
capabilities. For instance, the study [135] demonstrated how
the combination of wavelet transform and total variation the-
ory could effectively suppress noise while maintaining the
integrity of the PD signal. This hybrid approach ensures that
important diagnostic information is retained, making it suit-
able for applications in high-voltage transformermonitoring.
The ability of TVD to handle signals with sharp transitions
makes it a valuable tool for PD denoising, especially in
environments where signal clarity is essential for accurate
detection and fault diagnosis.

6.12 Nonlocal means

Nonlocal means (NLM) is an advanced denoising algorithm
that reduces noise by averaging similar patches of a signal
or image, even if they are spatially distant. This approach
is particularly useful in partial discharge (PD) detection,
where transient noise can obscure critical signal characteris-
tics. NLMworks by preserving important signal detailswhile
effectively eliminating random noise, making it suitable for
environments with complex noise patterns.

In PD signal denoising, NLM has shown promising
results when combined with other techniques like the com-
plete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN). For instance, the study [136] demon-
strates how the NLM algorithm enhances the effectiveness
of CEEMDAN by selectively filtering out noise based on
the similarity between signal segments. This combination
improves the clarity of PD signals, preserving crucial infor-
mation for accurate fault detection. Moreover, NLM has also
been applied in complex environments, such as in the study
[137] where the method was used to denoise images for
detecting faults in high-voltage systems. By maintaining key
features and reducing noise,NLMproves to be a highly effec-
tive technique for PD signal processing and image-based
anomaly detection.

7 Extraction of features from high-voltage
equipment

Extracting multiple features is essential in analyzing dis-
charge signals from high-voltage equipment. There have
been many examples of feature extraction that are often
done [25, 138]. The statistical overview of feature extrac-
tion in high-voltage equipment is the main topic of this
section. A flow diagram of the partial discharge monitor-
ing system is shown in Fig. 17. The monitoring system
comprises three components: gathering discharge signals,
extracting features from discharge signals, and analyzing
discharge data. Two distinct patterns, PRPD and TRPD, can
represent the filtered data after applying the discharge signal-
denoising and localization procedure.High-dimensional data
is frequently encountered when investigating discharge,
necessitating dimensionality reduction techniques.
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Several methods relate the phase angle, the number of dis-
charge pulses, and the amplitude of the charge, which is then
converted into positive and negative half cycles [139], two
separate groups that characterize PRPD. The distribution’s
skewness, mean, variance, kurtosis, and Weibull statistical
features can be derived [140]. The statistical feature has the
benefit of taking less time to compute. This study includes
statistical feature analysis for discharge signal extraction on
transformer isolation flaws [141].

Discharge patternswere identified byChen [142] in power
transformers using a fractal-based feature extractionmethod,
and the PRPD pattern is processed using an existing tech-
nique, namely the box-counting technique. Although scale
fluctuations and promising surface roughnessmeasuresmean
fractal dimensions are unaffected. The inability to distinguish
between features of the same fractal surface value led to the
creation of a new variable known as lacunarity [143].

The widest variance of the data is projected on the smaller
dimensions to reduce space while increasing the desired
sample spread [144]. The scree plot, a graph showing the
size of the eigenvalues about their number, can be used to
determine the number of primary components needed to
determine the precise value of the actual data [141]. Further-
more, Rahman et al. [86] proved that principal component
analysis (PCA) can autonomously localize discharge sources
in transformer windings. Artificial neural networks (machine
learning approaches) have now demonstrated respectable
efficacy for the identification and recognition of discharge
[145, 146]. Duan et al. [147] used four different fake dis-
charge faults (air gap discharge, floating, surface, and bar
plane) to identify discharge, which is comparable to the
methodology for evaluating power transformers proposed
in [148]. A sparse auto-encoder (SAE) technique is applied
in deep learning for feature extraction. Deep learning tech-
niques from SAE and SoftMax produce encouraging results
with an accuracy higher than 96%.

8 Classification in high-voltage equipment

This specific classifier is required because hesitancy could
result in incorrectly classifying the discharge model. Addi-
tionally, the features derived from the discharge pattern
determine the discharge accuracy classification.

The initialization of an ANN is done using weights with
modest values, and training is conducted using a forward
and backward method [149]. The hidden layer attribute is
employed to extract discharge characteristics. Li et al. [150]
proposed a convolutional neural network (CNN) architecture
to recognize the source of the discharge pattern of the UHF
signal, shown in Fig. 18. The short-time Fourier transform
(STFT) produces a 1× 128× 256 input for CNN. The filter,

pooling, and dropout layers comprise the algorithm’s first
three hidden layers.

Adaptive neuro-fuzzy inference system (ANFIS) is
employed to eliminate the need to select a suitable fuzzy
network for operation [151]. ANFIS is an effective method
by combining unique If–then rules to identify PD patterns
based on Sugeno’s fuzzy model [152]. The input variable is
set between 0 and 1 to improve training efficacy. With a 98%
accuracy rate, it was found that the ANFIS model is superior
to the fuzzy model when applied to detect discharge errors
using dissolved gas analysis (DGA) [153].

Support vector machine (SVM) is a statistical-based
regulation manager that uses basic algorithms and kernel
functions [154]. In this method, discharge pattern data can
be characterized using vector dimensions, depending on the
quantity of input characteristics. SVMworks well when non-
linearity, limited sample sizes, and big dimensions are factors
[155]. Another tool to address nonlinear problem analysis
inefficiencies is the kernel method. The authors in [156] clas-
sify discharge patterns based on SVM, obtaining favorable
results even though the amount of data is very complex.

The decision tree approach utilizes internal nodes for
feature testing, where leaf nodes represent class labels and
routes between roots and leaves represent classification rules
[157]. Because this method, unlike SVM or ANN, offers
visible rules for discharge classification, it has been widely
employed in discharge classification under various discharge
situations.

A decision tree has determined power transformer cavity
sizes and different discharge sources [158]. A straightfor-
ward and nonparametric approach called K-nearest neighbor
(KNN) categorizes the training set by identifying the group of
k items closest to the test object and assigning a type based on
the correlation of their respective classes in the surrounding
environment [159]. The labeled object, the number of nearest
neighbors, and the constant "k" are the three main compo-
nents of KNN. The KNN classification focuses on fresh data
points according to a higher vote for nearby data points.

9 Clustering in high-voltage equipment

Data is grouped into clusters using the unsupervised learn-
ing process known as discharge signal clustering, where each
cluster’s components are closely related. InPRPDandTRPD,
the clustering technique is frequently utilized to distinguish
and organize discharge pulse characteristics from various
discharge sources. The most recent discharge analyses in
high-voltage equipment are shown in Table 3.

The K-means (KM) algorithm is a fast and easy centroid-
based clustering method. K-means grouping is employed
until the assignment and convergence stages are reached,
allowing updates to be achieved [175]. This method poses
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Fig. 18 PD categorization with convolutional neural networks [150]

challenges due to limited knowledge and limitations such as
local minimum convergence and fixed K values [176].

In hierarchical cluster analysis, clusters are formed using
a clustering method known as the dominant order [177]. The
basic assumption in agglomerative hierarchical clustering is
that objects belong to discrete groups. Individual clusters
are then joined based on the separation between the two
objects, and the process is repeated until conditions are met.
Divisional clustering initially allocates all objects to a single
cluster, which is then divided into other clusters according
to rules [178]. The hierarchical cluster analysis method can
effectively study large structures, even though processing
takes longer. Additionally, changes take time to appear once
split or merge decisions have been made.

10 Challenges and future prospects

The resolution and sensitivity of sensor devices need
improvement. For instance, although acoustic emission sen-
sors have made significant and promising advances in high-
voltage equipment for corona discharge detection, there are
critical issues and potential solutions:

1. Study sensor design development thoroughly.
2. Acoustic emission sensors with high instrument sensitiv-

ity are generally required. Therefore, creatingAE sensors
for high-voltage equipment that can operate in any envi-
ronment and at any temperature is challenging.

3. Investigate the creation of a multipurpose AE sensor that
can be used in conjunctionwith other techniques to locate
corona discharges (CD).

4. Study competent methods and techniques in signal pro-
cessing, especially in signal denoising.

The main challenge is to create a multipurpose AE sensor
system that can detect several CD characteristics simultane-
ously.

11 Conclusion and discussion

This review study thoroughly analyzes current methods for
high-voltage equipment corona discharge signal analysis,
covering feature representation, classification, and clus-
tering strategies for discharge detection, localization, and
error severity analysis. Different approaches to corona dis-
charge detection collaboration have been introduced. The
importance of detecting corona discharge in high-voltage
equipment cannot be overstated, as the power system net-
work depends entirely on uninterrupted operation.

This review study also discusses partial and corona dis-
charges in high-voltage equipment andvariousflaws.Electric
and nonelectric discharge detection methods of many types
have been explored, along with the benefits and drawbacks
of each method. There has been extensive discussion on
the importance of discharge analysis in high-voltage equip-
ment to determine the specific type of discharge damage.
The corona discharge monitoring system comprises various
processes for analyzing flaws, including feature extraction,
clustering, classification, and CD detection. Every stage has
been detailed, accompanied by suggestions for contemporary
techniques.

Online CD measurement in high-voltage equipment is an
effectivemethod for analysis due to the complicated structure
of high-voltage equipment and the constraints posed by on-
site noise. Detection techniques can be further researched
to identify symptoms and mitigate the significant impact of
some noise on online sensing.
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